

Vertical drift detector optimisation studies

Dom Brailsford LBNC Review 10th May 2021

Vertical drift detector optimisation studies

- The reference design of the CRP-based vertical drift detector includes different features to the horizontal drift design
 - Longer drift length
 - A larger pitch in the collection plane
 - Induction plane orientation, including one plane parallel to the beam direction
- Alternative designs feature 2 readout views, and induction planes that are non-parallel to the beam direction
- As the vertical drift simulation is currently being configured, all ongoing optimisation studies use the simulation and reconstruction in the horizontal drift detector
- The initial studies largely focus on the reconstruction impact of a 2 view detector, featured in the alternative design. Those studies broadly investigate the impact on:
 - 1. Full 3D reconstruction, using the Pandora recognition suite
 - 2. Event-level neutrino flavour ID, using a Convolution Visual Network (as was used in the DUNE TDR oscillation analysis)

Vertical drift detector optimisation studies using Pandora

- Pandora is a pattern recognition suite used by DUNE's horizontal drift detectors
- Inputs are reconstructed 2D hits
- Outputs are fully 3D, reconstructed particles arranged into parent/child hierarchies
- All 2D stages of the pattern recognition should be largely unaffected by the number of available readout views
- The impact of 2 available views would be largest during the 2D->3D matching stage
 - Where the 2D clusters are matched across views to make 3D particles
- Pandora provides a suite of dedicated 2D->3D matching algorithms

Pandora's 3 view 2D->3D matching using geometry

- Matches 2D cluster triplets across views to make a 3D particle
- Compares equivalent positions in time on each of the clusters in the matching triplet
- Two clusters in each triplet are used to infer positions in the opposing view (e.g. U:V -> W)
- Repeatedly finding a good match between inferred and measured positions indicates a good match

Pandora's 2 view 2D->3D matching using geometry

- A lot less to work with when considering geometry alone
- Algorithm measures the overlap/end point proximity of two clusters
- Two clusters end points being in close proximity indicates a good match

Pandora's 2 view 2D->3D matching using calorimetry

- A new matching algorithm, originally developed for ProtoDUNE-DP (a 2 view LAr TPC)
- Algorithm exploits similarity of energy deposition profiles between views to enhance the 2D->3D matching performance
- Compare fractional charge profiles for 2D cluster pairs where they overlap in time (red and black histograms)
- For each cluster comparison, calculate:
 - Global matching score*
 - Local matching scores* for regions of the overlap (blue curves)

Fractional charge (no units)

Fractional charge (no units)

 A high score (global or local) indicates a good match

*Score based on correlation coefficient p-value

Position along drift axis (cm)

Position along drift axis (cm)

Testing the 2D->3D matching performance of a 2 view/3 view detector

- The studies have been carried out using two versions of the horizontal drift far detector
 - The nominal design: induction planes are ~±36 degrees to the vertical
 - The alternative design: induction planes are ~±45 degrees to the vertical
- The studies involve two separate Monte Carlo samples simulated in the horizontal drift far detector
 - 'Di-muon' particle gun events
 - Charged current v_{μ} interactions simulated using GENIE
- The studies assess three iterations of 3D reconstruction provided by Pandora
 - 1. The standard pandora reconstruction workflow for the horizontal drift detector
 - 3 view and 2 view geometric 2D->3D matching
 - 2. Iteration 1 with the collection plane missing
 - 2 view geometric 2D->3D matching-only
 - 3. Iteration 2 with the calorimetry-based 2D->3D matching

Di-muon reconstruction efficiency (particle gun simulation)

- Di-muon particle gun simulation:
 - Two muons fired from the same location
 - Both muons are roughly forward going
- Di-muons are simulated in the alternative horizontal drift detector design
 - Induction planes are ±45 degrees to the vertical
- RHS plot shows the di-muon event reconstruction efficiency vs the true opening angle between the di-muon pair
- The di-muon event is counted as reconstructed if:
 - Both muons truth match to at least one reconstructed particle
 - The contributing views of the reconstructed particle all match the same true muon
- 2 view 2D->3D matching performance can be partially recovered by the calorimetric matching
 - It should be noted that the calorimetric matching is a very new and ongoing development

Event displays showing calorimetric 2D->3D matching failures

Muon reconstruction efficiency (neutrino simulation)

- Simulated charged current v_{μ} interactions in the nominal single phase far detector
 - Induction planes are ~±36 degrees to the vertical
- RHS plot shows final-state muon reconstruction efficiency vs its angle in the YZ plane
- The muon is counted as reconstructed if:
 - The muon truth matches to at least one reconstructed particle
 - The muon truth matches to all of the reconstructed particle's contributing views
- The calorimetric 2D->3D matching partially recovers the performance when the muon is not near-parallel to the wire orientation
- When 3 views are available, the reconstruction efficiency is largely impervious to the muon inclination

Neutrino flavour identification efficiency using a CVN

	Taken from vertical drift detector proposal		
Configuration		$\nu_e \text{ CC}$	$\nu_{\mu} { m CC}$
		purity @ efficiency	purity @ efficiency
DUNE CVN	(3 views)	0.92 @ 0.89	0.97 @ 0.94
Collection plane only	(1 view)	0.87 @ 0.81	0.96 @ 0.88
Two induction planes	(2 views)	0.85 @ 0.85	0.96 @ 0.91
Collection and one induction plane	(2 views)	0.86 @ 0.84	0.96 @ 0.91

- Reminder: Convolution Visual Network (CVN) used as the sole neutrino flavour ID algorithm for the far detector oscillation analysis in the TDR
 - CVN assesses reconstructed energy depositions in all available readout views simultaneously
- The CVN was exposed to different combinatorics of readout views to assess performance impact
- The nominal horizontal drift far detector geometry was used for each test
- Neutrino flavour identification performance weakly depends on the number of available views

Vertical drift reconstruction timeline

- Vertical drift particle and detector response simulation is nearing completion
- We will then begin mechanically configuring the full reconstruction workflow for the vertical drift detector
 - Expected to take ~2 months
- After configuration, the reconstruction workflow would need to be tuned and validated. Optimisation studies using the vertical drift reconstruction would be part of that procedure
 - Expected to take ~6 months

Summary

- Initial vertical drift optimisation studies have begun
 - The studies so far solely use the horizontal drift detector
 - The studies primarily focus on the impact of the alternative 2 view vertical drift design
- Two broad areas of the reconstruction are being assessed
 - 3D reconstruction using the Pandora pattern recognition suite
 - Event-level neutrino flavour identification using a CVN
- The evolving findings for the 3D reconstruction are that the 2D->3D matching performance is lower for a 2 view detector:
 - The 2D->3D matching performance can be bolstered, but so far not completely recovered, by employing calorimetry
- The CVN's neutrino flavour identification performance weakly depends on the number of available readout views
- The ongoing studies will transition to using the full vertical drift detector reconstruction as it comes online in the next few months