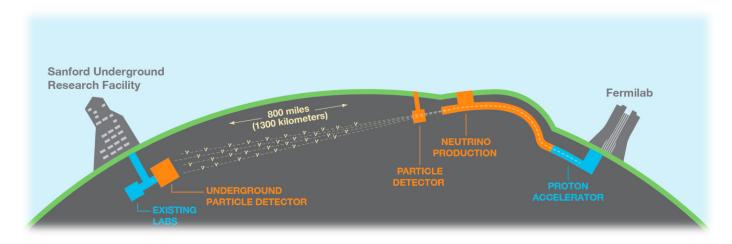
Scintillation light detection in the long-drift ProtoDUNE-DP liquid argon TPC

Clara Cuesta for the DUNE Collaboration TIPP 2021 May, 26th 2021



Deep Underground Neutrino Experiment (DUNE)

DUNE aims at answering fundamental questions related to:

- The matter-antimatter asymmetry neutrino oscillations & mass ordering
- The Grand Unification of forces nucleon decay searches
- The supernova explosion mechanism supernova neutrino detection

EPJC 80 (2020) 978 EPJC 81 (2021) 322 arXiv:2008.06647

- \circ New neutrino (v_{μ} or $\overline{v_{\mu}}$) beam facility at Fermilab (LBNF), US
- A highly capable Near Detector at Fermilab to measure the unoscillated neutrino spectrum and flux constraints
- 4 x 10 kton (fiducial) LArTPC modules deep underground at SURF (Lead, SD, 1300 km baseline)

JINST 15 (2020) 108008 JINST 15 (2020) T08010

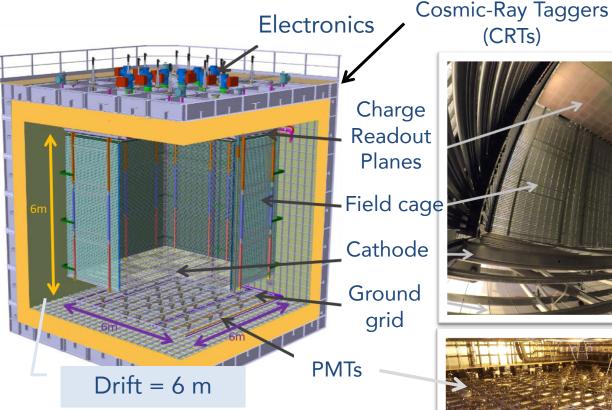
ProtoDUNEs at CERN

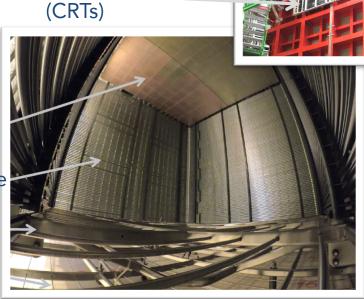
Construction and operation of 1 kton-scale prototypes at CERN, critical to demonstrate viability of LArTPC technology, and that the DUNE Collaboration can implement a major construction activity.

ProtoDUNE Dual Phase

- LArTPC 6 m vertical drift + charge amplification in gas Ar + photon detection system
- Cosmic-muon data in 2019-2020

ProtoDUNE Single Phase


- LArTPC 3.6 m horizontal drift + photon detection system
- Beam data taken in 2018 & cosmic-muon data in 2018-2020 JINST 15 (2020) 12
- ProtoDUNE-SP Phase II in 2022


ProtoDUNE Dual Phase

TDR: arXiv:1409.4405

6x6x6 m³ (300 ton active volume) DP LArTPC

Short circuit in HV extender limited drift field LAr bubbles impacted CRP operation

Operation at CERN 2019-2020

Photon Detection System (PDS)

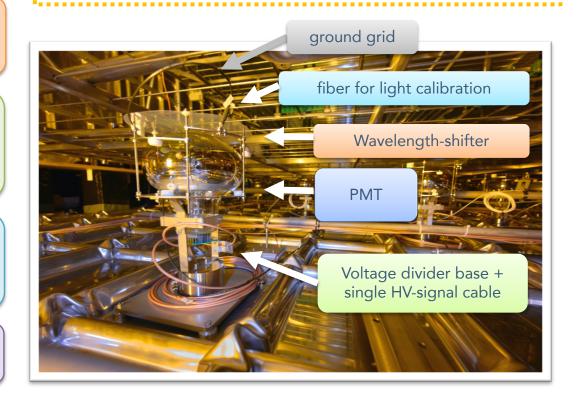
36 8" cryogenic photomultipliers (PMTs)

JINST 13 (2018) T10006

JINST 15 (2020) P09023

Wavelength-shifter:

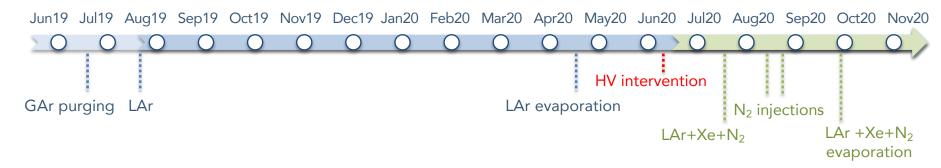
PEN / TPB coating on PMT


Voltage divider base + single HV-signal cable + splitter (external)

Light calibration system:

LED (external) & fiber based
JINST 14 (2019) T04001

DAQ system (external) arXiv:2103.02415 LAr scintillation light (VUV, 127 nm)


- S1: Singlet (τ_{fast} , 6 ns), triplet state (τ_{slow} , 1.6 μ s)
- S2: electroluminescence from GAr (100's µs ms)

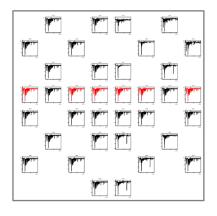
ProtoDUNE-DP PDS operation at CERN

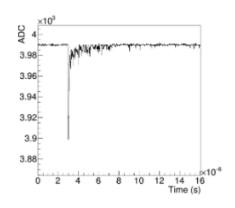
Cosmic-muon data taken with the PDS from June 2019 to November 2020 (18 months):

- The PDS has operated in stable conditions all the time.
- PMTs switched on-off ~daily to allow cameras and purity monitor operation.
- Data taken in different liquid conditions:

Situation	[Xe] (ppm)	[N ₂] (ppm)
LAr	0	0
$LAr + Xe + N_2$	5.8	1.7
1st N ₂ injection	5.8	2.7
2 nd N ₂ injection	5.8	4.7

This talk is focused on the LAr operation, for Xe doping results, see talk by J. Soto: Impact of xenon doping in the scintillation light in a large liquid-argon TPC

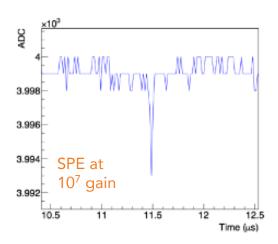


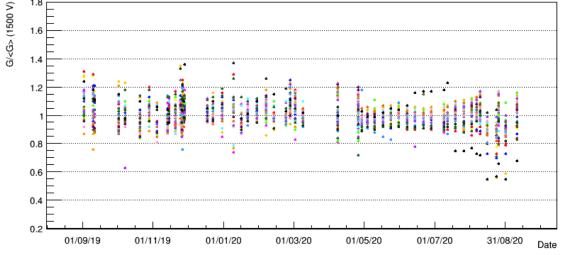

ProtoDUNE-DP PDS operation at CERN

• Data taken in various trigger modes (130.7M events, 675 h) with and w/o drift field:

Trigger	Rate	Goal	# of events (M)	Time (h)
PMT trigger	Hz-kHz	PMT coincidence over a threshold	85.3	96
CRT-trigger	0.3 Hz	muon-track selection	0.6	515
Calibration	1 kHz	PMT gain determination	30	42
Random trigger	Configurable	background and muon studies	14.7	21

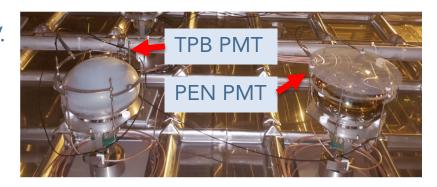
 Each event contains the information of 36 individual PMT waveforms (16 ns sampling, configurable acquisition window, 2 Vpp dynamic range).





PDS performance

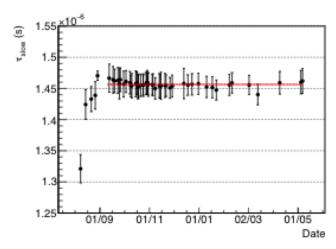
- Time accuracy among the PMTs for the same event better than 16 ns measured.
- Remarkable low noise in baseline (0.6 \pm 0.1 ADC).
- Single photo-electron characterization (amplitude, width) as a function of gain. S/N > 11 at 10^7 gain.
- PMTs calibrated weekly to determine the PMT gain and measure light collected in PE.



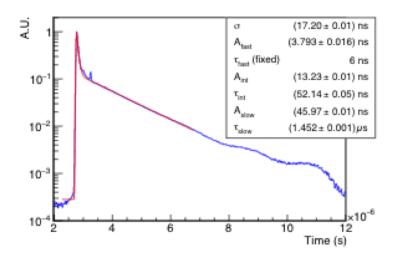
PMT gain stable despite PMTs are switched on daily. (9% gain STD at 1500 V, average 36 PMTs)

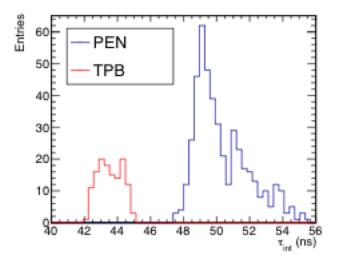
Wavelength shifting: PEN & TPB

- Wavelength shifting required as PMTs are not sensitive to LAr scintillation light in VUV.
- ProtoDUNE-DP has two different methods:
 - PMTs covered with PEN foils, a novel thermoplastic simple to install.
 - TPB coated in a dedicated set up directly over the PMT glass.


- Experimental data: S1 charge (PE) collected by PEN PMTs is 25% the charge collected by TPB PMTs in a controlled event population (50-200 PE average, PMT trigger data).
- From the experimental data the relative wavelength shifting efficiency of both materials is 0.35, estimated taking into account the geometrical differences between both systems:
 - There are less photons arriving to the TPB than to the PEN, as PEN has both faces exposed to LAr (x0.69).
 - 50% (25%) of the photons re-emitted by the TPB (PEN) reach the PMT.

Parameter	Factor
S1 charge (PE) collected by PEN PMTs / TPB PMTs in ProtoDUNE-DP	0.25
Relative WLS efficiency PEN / TPB	0.35

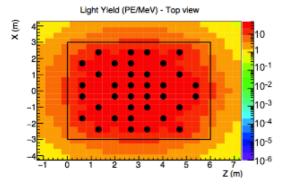


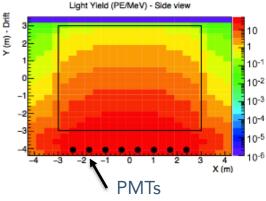

LAr scintillation time profile

- Muon-like events with no drift field applied (full recombination of e⁻).
- Average time profile: convolution of 1 gaussian with 3 exponential decays:
 - τ_{fast} : fixed to 6 ns.
 - τ_{slow} : 1.45 ± 0.2 μs, monitored regularly indicating LAr purity at ppb level.

- τ_{int} : clear difference between PEN and TPB PMTs pointing to delayed emission in the WLS.

Cosmic-muon light simulation

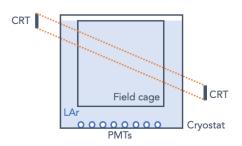

- LArSoft toolkit designed for LAr neutrino experiments
- ProtoDUNE-DP detailed geometry
- Cosmic-induced particles based on CORSIKA
- Muons crossing CRT panels simulated
- Photon propagation in LAr:

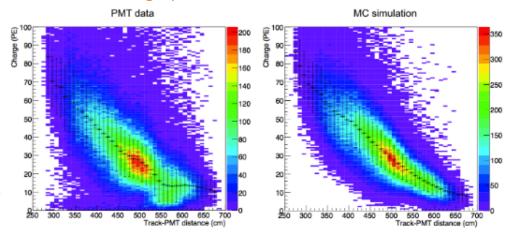

Parameter	Value
Absorption length	20 m
Rayleigh scattering length	99.9 cm*; 61 cm
VUV reflectance	26% Al & stainless steel; 0%
Voxel size	$0.34 \times 0.32 \times 0.34 \text{ m}^3$
	* Default values

Photon libraries: photon visibility and propagation time per voxel.

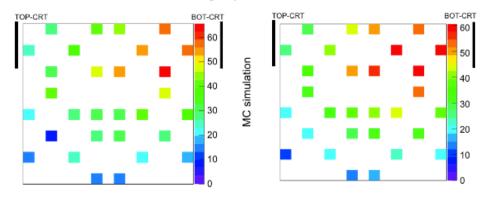
• PMT response simulated producing a waveform per PMT.

Detected light per voxel for the default photon library



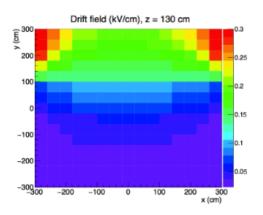

LAr light study with cosmic-muon data

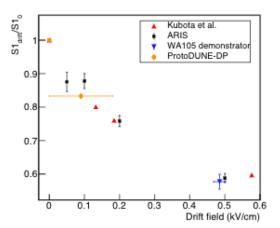
 CRT-trigger events with known topology (diagonal muon tracks).

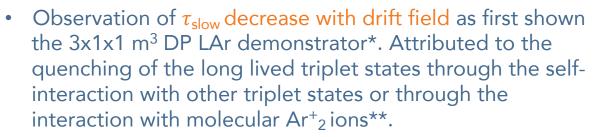


- Study of collected S1 light per PMT vs. minimum distance from the muon to the PMT for data and simulation.
- S1 charge per PMT follows the expected pattern.
- Analysis focused on PEN PMTs.
- High energy events (>100 PE) and low energy background (relevant a >5 m) not included in simulation.
- Data-MC match within 10%.

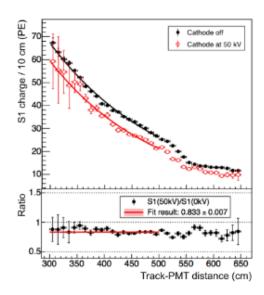
S1 charge per PMT vs. track-PMT distance

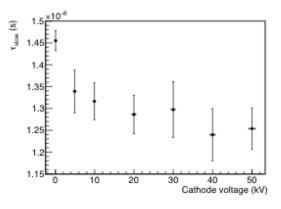

S1 charge per PMT



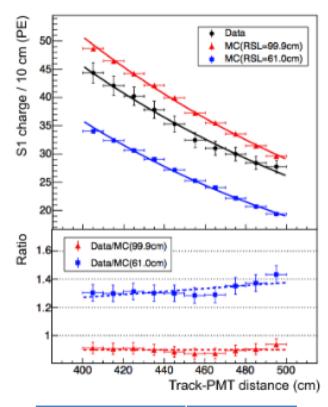


Light production in LAr


- S1 light yield reduction with drift field (17% at 50 kV) caused by the suppression of the electron-ion recombination.
- Considering average drift field (0.9 kV/cm), Birk's law is verified.



* JINST 16 (2021) P03007 ** PRD 103 (2021) 043001



Light propagation in LAr

- ProtoDUNE-DP, the longest drift-distance LAr TPC ever operated → unprecedented study of the light propagation.
- Evaluation of the simulated Rayleigh scattering length.
 - Better agreement between data and the 99.9-cm
 MC sample than with the 61.0-cm value.
 - Light will undergo Rayleigh scattering before being deeply attenuated due to absorption by LAr impurities or detector elements (excellent LAr purity & large free LAr volume).
- Study of the VUV-photon reflections comparing simulations:
 - 26% reflectivity for VUV light in the field cage (Al) and in the cryostat walls, cathode and ground grid (stainless steel)
 - Full light absorption in all components.
 - >11 % of the light detected PMTs in the MC from reflected VUV-light in Al or stainless steel.

Parameter	$\lambda_{\sf att}$ (from fit)
Data	180 ± 17 cm
MC (RSL 99.9 cm)	180 ± 10 cm
MC (RSL 61.0 cm)	157 ± 8 cm

Electroluminescence light detection

- Effect on the SPE rate (background), computed from random-trigger data:
 - o without S2: ~350 kHz (TPB PMTs), ~170 kHz (PEN PMTs)
 - o with S2: ~2.5 MHz (TPB PMTs), ~1.1 MHz (PEN PMTs)
- S2 electroluminescence signals detected in all PMTs, corresponding to light 7 m away from PMTs.
- S2 provides information of the drifted e-, but ProtoDUNE-DP field limitations restricts the study.

Event example with S1+S2 signal

Conclusions

- We will learn a lot about neutrinos in the next decades and DUNE will be a crucial experiment as well as an enormous challenge.
- To demonstrate the technology, ProtoDUNE program running at the CERN Neutrino Platform.
- ProtoDUNE-DP operated in 2019-2020 at CERN with limited field conditions. PDS collected cosmic-ray data for 18 months in stable conditions with 36 PMTs operative.
- Validation of the PDS design for long drift LAr TPCs.
- Pioneering use of PEN as wavelength shifter and performance compared to TPB.
- Light production: Observation of light yield suppression with drift field due to recombination according Birk's law.
- The size of ProtoDUNE-DP, the longest drift-distance LAr TPC ever operated, allows for unprecedented results of the light propagation in LAr.
- Electroluminescence signal detected from 7 m in all PMTs.

