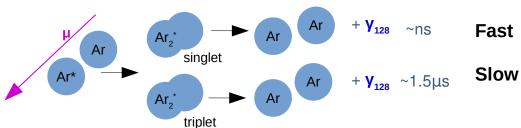
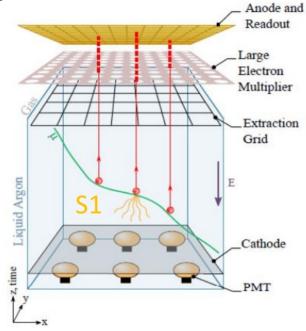
Impact of xenon doping in the scintillation light in a large liquid-argon TPC

J. Soto-Oton on behalf of DUNE Collaboration

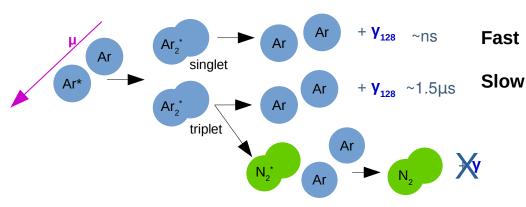
TIPP 2021

International Conference on Technology and Instrumentation in Particle Physics

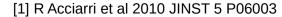




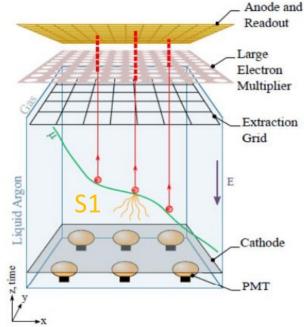
Scintillation light in a LAr-TPC



- In liquid argon, crossing particles produce ionization electrons and **scintillation photons**.
- Light detection is important in a LAr-TPC:
 - It provides the timing, and a trigger...
 - It improves the calorimetric reconstruction.
- In a LAr-TPC ionization electrons are drifted (~ms) and extracted to reconstruct the track. They recombine producing more photons if no field is present.

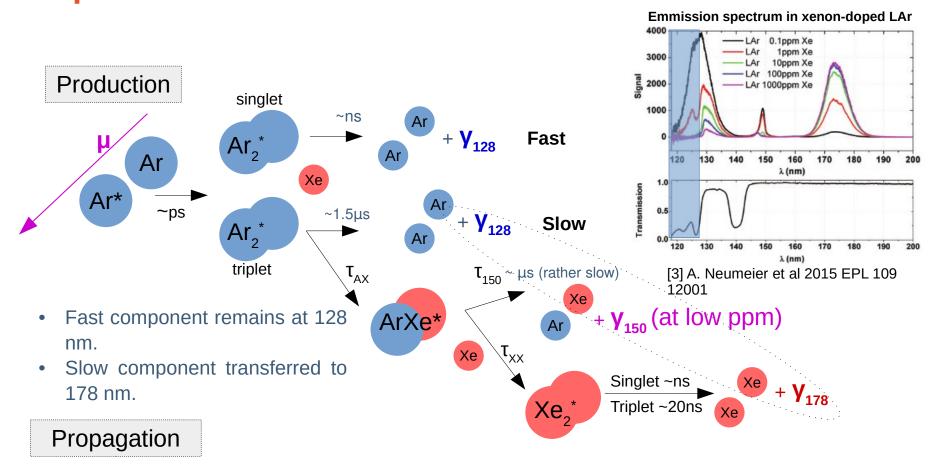


Scintillation light in a LAr-TPC



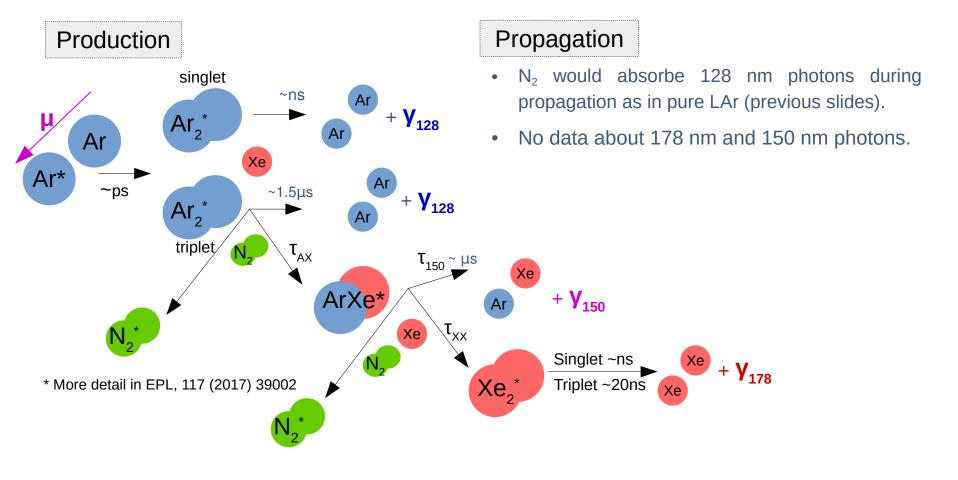
- A high purity is required since long-life triplet-state can be **quenched by impurities** like N₂, reducing the light production [1].
- Also N2 impurities absorbe photons during propagation
 [2]:

[N2]	Absorption length	Attenuation at 5 m
ppb	1.8 km	0%
2 ppm	30 m	15%
5 ppm	12 m	35%

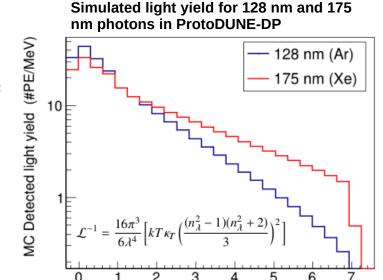


[2] B J P Jones et al 2013 JINST 8 P07011

How does xenon affect the production and propagation of photons in LAr?

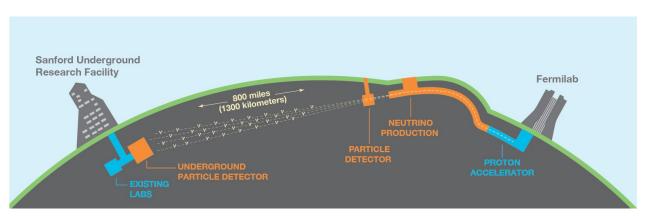


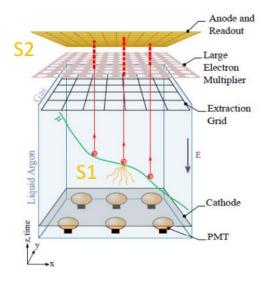
- Xenon absorbes the 128 nm photons during propagation, no absorption at 178 nm and 150 nm photons [3].
- Larger Rayleigh scattering length for 178 nm photons (~9m vs 1m for 128 nm photons) → More collection at large distances [4].
 [4] M. Babicz et al 2020 JINST 15 P09009


How does nitrogen affect the production and propagation of photons in xenon-doped LAr?

Why using Xe-doped LAr in a LAr-TPC?

- An increase in the detected light is expected:
 - Better detection uniformity: There is an increase in the collection at large distances, due to the larger Rayleigh scattering length for 178 nm photons (from 1 m to ~9 m).
 - Light production recovery in case of an N₂ contamination.
 - There is photosensors more sensitive to 178 nm photons.
- Posible limitations:
 - Xenon absorbes the fast signal, this could compromise the trigger capabilities.
 - Also, the larger Rayleigh scattering would reduce the light collection at short distances (see plot at x=0 m).

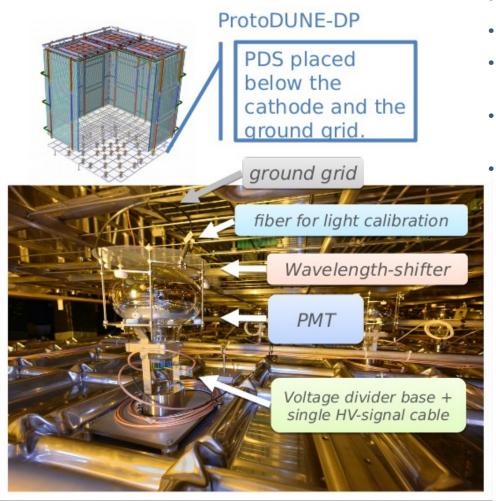

[2] M. Babicz et al 2020 JINST 15 P09009



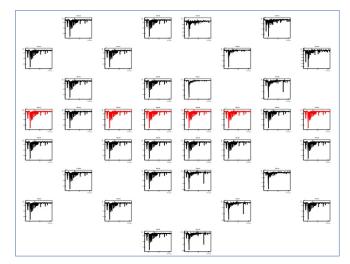
Distance to the PMTs (m)

Deep Underground Neutrino Experiment

- DUNE is a long-baseline neutrino oscillation experiment. It will detect a beam of neutrinos produced 1,300 km away.
- It has a rich physics program:
 - **CP violation** and **neutrino mass** ordering using neutrino oscillations.
 - Proton decay searches, neutrino astrophysics and physics Beyond Standard Model searches.
- 4 x LArTPCs of 12x12x60 m³ 10kton fiducial mass each.


ProtoDUNE DP (CERN):

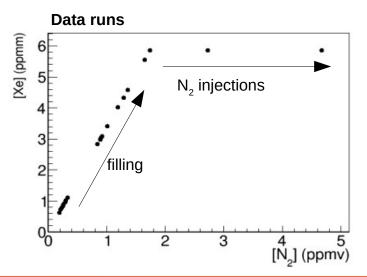
- 750 ton of Ar.
- Argon gas layer in the top where the charge signal is extracted, amplified and collected.
- The largest Dual-Phase TPC ever built: 6x6x6 m³

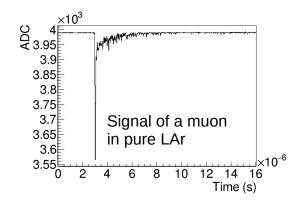


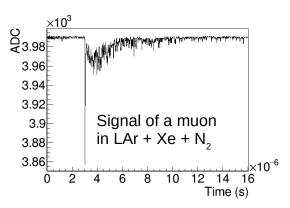
Photon detection in ProtoDUNE-DP

- Placed at CERN Neutrino Platform.
- 36 8" Hamamatsu PMTs placed at the bottom.
- 6 PMTs coated with TPB or 32 with a PEN foil on top, to shift the wavelenght of the photons.
- One year of cosmic data with LAr, from summer 2019 to 2020.
- For pure LAr results see talk by C. Cuesta: https://indico.cern.ch/event/981823/contributions/42 93608/

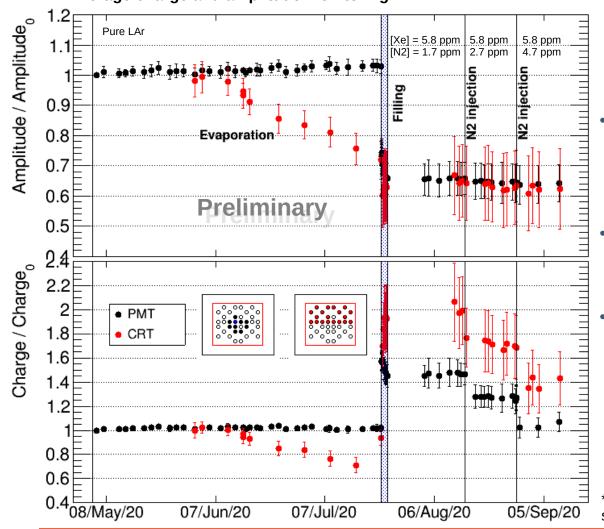
Typical event of a crossing muon on the 36 PMTs. TPB-coated PMTs in red.

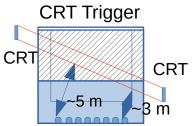


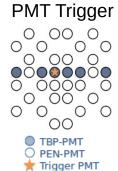



Summary of the ProtoDUNE-DP xenon program:

After the operation with pure liquid argon, the detector was refilled with a mixure of **LAr+Xe+N**₂. Data was taken during all the process.

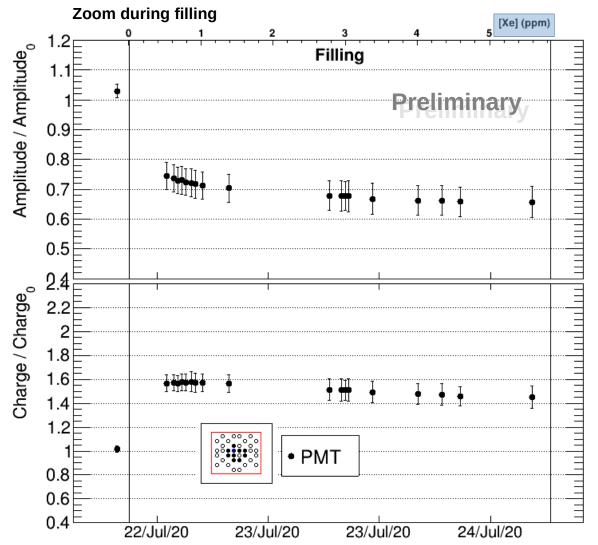



Situation	[Xe] (ppmm)	$[N_2]$ (ppmv)	
$_{ m LAr}$	0	0	
$LAr + Xe + N_2$	5.8	1.7	
1^{st} N ₂ injection	5.8	2.7	
2^{nd} N ₂ injection	5.8	4.7	



Signal monitoring

Average charge and amplitude monitoring

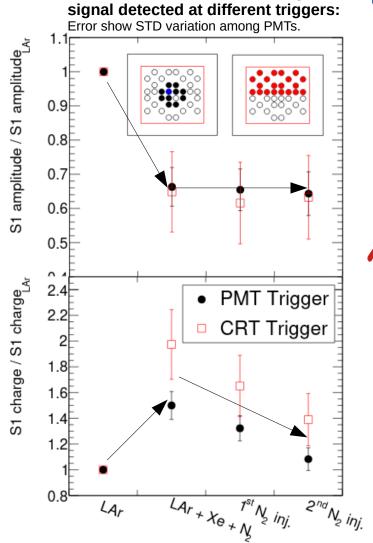

- 2 triggers:
 - PMT Trigger: Near tracks.
 - CRT trigger Far tracks.
- Amplitude is reduced when adding xenon, and it is not affected by the nitrogen.
- A large increase of charge with xenon, and reduction with N_2 , as expected.

^{*} error bars show the STD variation for the selected PMTs

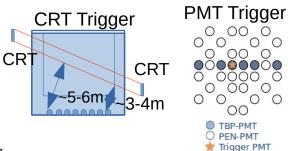


Signal monitoring

- Most of the amplitude reduction happened at the beginning of the filling, with the xenon concentration still very low (<1ppm).
- The charge increase is maximal at the lowest xenon concentration.


^{*} Error bars show the STD variation for the selected PMTs.

^{*} Filling flow was uniform during all the filling.


ProtoDUNE-DP results Impact on the light yield

When adding Xe and N₂ (filling):

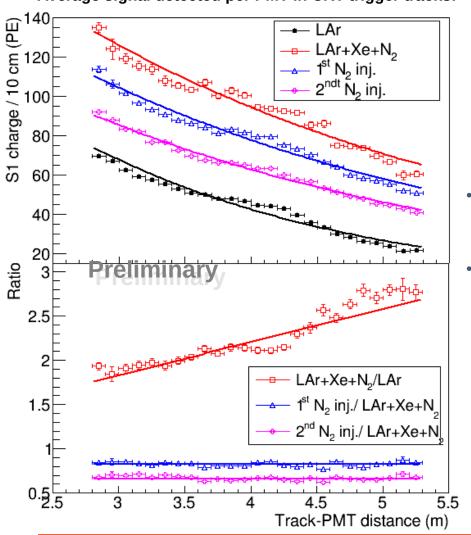
- We expect a suppression of the amplitude/fast component due to the absorption of 128 nm photons by Xe and N₂.
- We observe a reduction of **35%** in both triggers.
- We expect a larger increase of the collected charge on far tracks (CRT) due to improved uniformity for 178 nm photons.
- 60% charge increase on near tracks (PMT), 100% increase on far tracks (CRT).

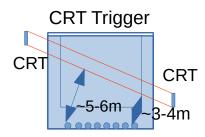
Relative variation of the average

When adding N_2 only:

 We expect a ~20% reduction of the amplitude/fast component on CRT tracks due N₂ absorption of 128 nm photons.

We expect a reduction of the charge due to the ArAr and ArXe guenching.


Charge is **reduced ~30%** on both triggers.

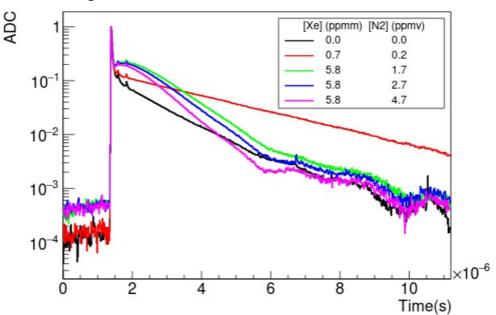


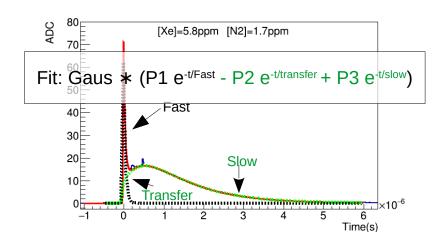
ProtoDUNE-DP results Impact on the attenuation length

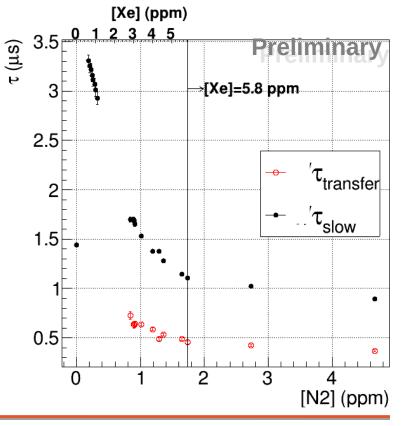
Average signal detected per PMT in CRT trigger tracks:

- The effective attenuation length increases 60% when adding xenon, while it remains after the injections of nitrogen.
- Small sensitivity to variations in the absorption length due to the N₂ injections.

Preliminary

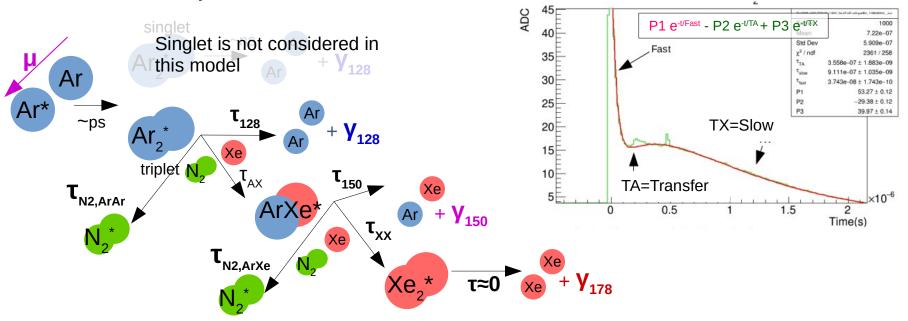

Situation	λatt (±10 cm)		
LAr	215		
LAr + Xe + N ₂	350 (+60%)		
1 st N ₂ injection	340		
2 nd N ₂ injection	330		




ProtoDUNE-DP results Impact on the time profile

Average waveform at different concentrations

- Each average waveform is fitted.
- Fit parameters are shown in the right plot.

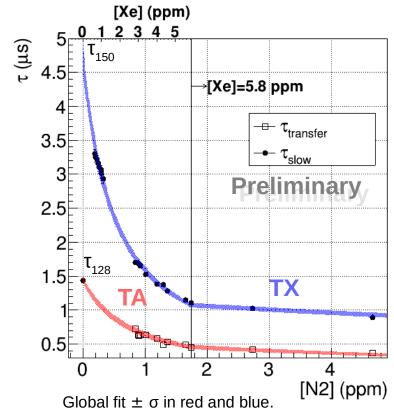


Fitting to the scintillation model

- A simple model is obtained **at low dopant concentrations** by considering:
 - No xenon quenching on the singlet.
 - XeXe* decays much faster.

Rate of ArAr* disappearence:
$$\frac{1}{\tau_{TA}} = \frac{1}{\tau_{N2,ArAr}} + \frac{1}{\tau_{AX}} + \frac{1}{\tau_{128}} = k_{N2,ArAr}[N2] + k_{AX}[Xe] + \frac{1}{\tau_{128}} = k_{N2,ArAr}[N2] + k_{AX}[Xe] + \frac{1}{\tau_{128}} = k_{N2,ArXe}[N2] + k_{AX}[Xe] + \frac{1}{\tau_{150}} = k_{N2,ArXe}[N2] + k_{AX}[Xe] + k$$

• The time constants are extracted by doing a global fit to all the profiles at the different dopant concentrations.



Fitting to the scintillation model

		PIEIIIIIII	
Process	Time	ProtoDUNE-DP results	Literature
$Ar_2^*(^3\Sigma_u^+) \to 2Ar + \gamma \ (128 \text{ nm})$	$\tau_{128} \; (\mu s)$	1.44	~ 1.5
$Ar_2^*(^3\Sigma_u^+) + Xe \to ArXe^* + Ar$	τ_{AX} [Xe] (μs ppm)	5.4 ± 0.3	
$ArXe^* \to Ar + Xe + \gamma $ (150nm)	$ au_{150} \; (\mu s)$	4.7 ± 0.1	
$ArXe^* + Xe \to Xe_2^*(^{1,3}\Sigma_u^+) + Ar$	τ_{XX} [Xe] (μs ppm)	9.2 ± 0.1	11.4 [Wahl]
$Ar_2^*(^3\Sigma_u^+) + N_2 \to 2Ar + N_2$	$\tau_{N2,ArAr}$ [N ₂] (μs ppm)	4.1 ± 0.1	9.1 ± 0.1 [Acciarri]
$ArXe^* + N_2 \rightarrow Ar + Xe + N_2$	$\tau_{N2,ArXe}$ [N ₂] (μs ppm)	20.3 ± 0.7	

Preliminary

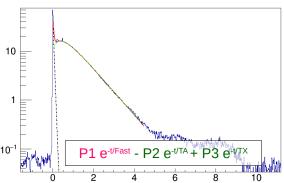
- The model fits well the data, but some discrepancies with the values in the literature are observed:
 - The N₂ quenching on ArAr is much faster from the value reported in the literature (4us vs 9us).
 - Transfer rate from ArXe to XeXe is not far from what is in the literature for higher doping values (from 10 to 1000 ppm of xenon).
- Measurement of many parameters of interest with no reference values in the literature.
- Some limitations must be considered:
 - Model approximations: Fast component quenching not considered and XeXe decay instantaneous.
 - Limited sensitivity to TA due to the overlaping fast signal and reflections.

Points show the individual fit for each run.

Summary and conclusions

- Xenon-doping is a promising technique that would increase the light yield and improve the light detection uniformity for large Lar-TPCs, like DUNE.
- ProtoDUNE-DP toke dedicated data with xenon-doped liquid argon, in the range of 0-5 ppm of xenon and nitrogen.
- Collected charge increases 100% for a diagonally crossing muon in LAr+Xe(5.8ppm) $+N_2(1.5ppm)$ w.r.t to LAr only.
- The **detection uniformity improves**, with an attenuation length 60% longer when adding xenon.
- The light signal amplitude decreases 35% in LAr+Xe(5.8ppm)+N₂(1.5ppm) w.r.t to liquid argon only. This could compromise the trigger capabilities.
- A model for the scintillation light production in xenon doped liquid argon with N₂ impurities has been proposed to measure the quenching constants.

Backup


Scintillation model in LAr, Xe, N₂ mixtures

The scintillation time profile can be resolved. In this case, only for the triplet component:

	Process	Time	Value
	$Ar_2^*(^3\Sigma_u^+) \rightarrow 2Ar + \gamma \ (128 \text{ nm})$	τ_{128}	$\sim 1.5 \mu s$ (decay time)
	$Ar_2^*(^3\Sigma_u^+) + Xe \to ArXe^* + Ar$	$ au_{AX}$	(collision time)
Xe	$ArXe^* \to Ar + Xe + \gamma $ (150nm)	τ_{150}	
	$ArXe^* + Xe \rightarrow Xe_2^*(^{1,3}\Sigma_u^+) + Ar$	τ_{XX}	
	$Xe_2^*(^{1,3}\Sigma_u^+) \to 2Xe + \gamma \ (175 \text{ nm})$	τ_{175}	$\sim ns$ (Kubota, 1993)
N2	$Ar_2^*(^3\Sigma_u^+) + N_2 \to 2Ar + N_2$	$\tau_{N2,ArAr}$	$rac{9~\mu ext{s ppm}}{[N2]}$ (Acciarri, 2009)
quenchin	$g ArXe^* + N_2 \to Ar + Xe + N_2$	$\tau_{N2,ArXe}$	(quenching time)

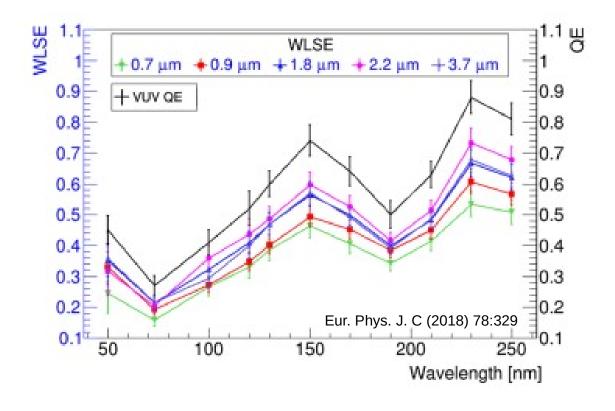
Considering the processes collected in the table above, and their characteristic time decays (τ 's), the concentration of Ar_2^* , $ArXe^*$ and Xe_2^* excimers (AA, AX and XX) is modelled as entangled stochastic processes:

$$\begin{split} \frac{dAA}{dt} &= -\frac{AA}{\tau_{128}} - \frac{AA}{\tau_{N2,ArAr}} - \frac{AA}{\tau_{AX}} = -\frac{AA}{\tau_{TA}} \\ \frac{dAX}{dt} &= +\frac{AA}{\tau_{AX}} - \frac{AX}{\tau_{150}} - \frac{AX}{\tau_{N2,ArXe}} - \frac{AX}{\tau_{XX}} = +\frac{AA}{\tau_{AX}} - \frac{XX}{\tau_{TX}} \\ \frac{dXX}{dt} &= +\frac{AX}{\tau_{XX}} - \frac{XX}{\tau_{175}} \end{split}$$

The total number of photons will be proportional to the sum of the time derivative of all the concentrations.

$$\frac{dAA}{dt}(128 \text{ nm}) + \frac{dAX}{dt}(150 \text{ nm}) + \frac{dXX}{dt}(175 \text{ nm}) \stackrel{\tau_{175} \ll \tau_{TA}, \tau_{TX}}{\approx} -A_1 e^{-t/\tau_{TA}} + A_2 e^{-t/\tau_{TX}}$$

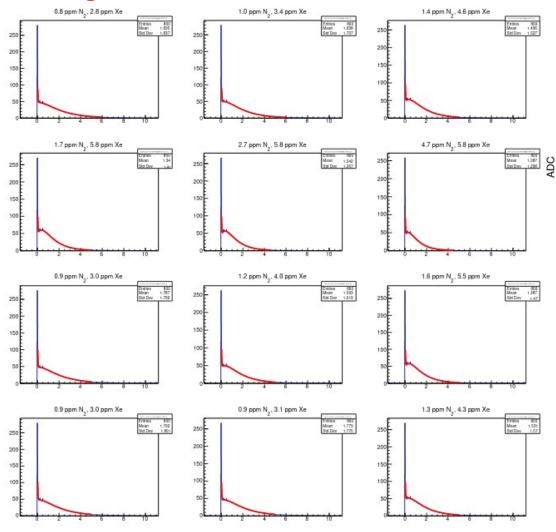
The scintillation time profile can be expressed as two exponentials, with the time decay depending linearly with the dopant concentration:

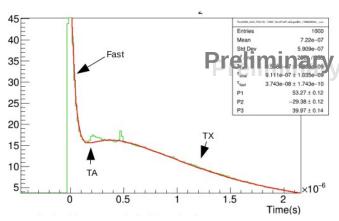

•
$$\tau_{\text{TA}}$$
 and τ_{TX} are the exponents we extract directly from the data:

$$\frac{1}{\tau_{TA}} = \frac{1}{\tau_{N2,ArAr}} + \frac{1}{\tau_{AX}} + \frac{1}{\tau_{128}} = A[N2] + B[Xe] + C$$

$$\frac{1}{\tau_{TX}} = \frac{1}{\tau_{N2,ArXe}} + \frac{1}{\tau_{XX}} + \frac{1}{\tau_{150}} = D[N2] + E[Xe] + F$$

TPB wavelength-shifting efficiency vs wavelength





Move to backup?

Fitting to the scintillation model

Warning: The fast component and the reflections limit the sensitivity to the TA

Example of the global fit performed to a PMT.

