# Search for anomalous tau neutrino appearance in the DUNE Near Detector

Miriama Rajaoalisoa (University of Cincinnati)

NuTau and High Energy Beam meeting May 13, 2021



### Introduction Objectives of the analysis

#### Objectives

#### Main objective

- Study of the eventual  $\nu_{\tau}$  that we may have in the DUNE ND that comes from short baseline oscillations, in a sterile neutrino framework.
- Distance from neutrino source to DUNE ND is 574 m  $\rightarrow$  no  $\nu_{\tau}$  should be present at the DUNE ND for 3-flavor oscillation model but  $\nu_{\tau}$  appearance possible for sterile-driven oscillations.
- Evaluate the  $\nu_{\tau}$  appearance sensitivity of DUNE ND by studying  $\nu_{\tau}$ CC interactions for both leptonic and hadronic  $\tau$  decay channels  $(\tau \rightarrow e, \tau \rightarrow \mu, \tau \rightarrow \rho)$ .

#### Oscillation probability

$$P(\nu_{\mu} \to \nu_{\tau}) \approx sin^{2}(2\theta_{\mu\tau})sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right) \qquad sin^{2}(2\theta_{\mu\tau}) = 4|U_{\mu4}|^{2}|U_{\tau4}|^{2} = \cos^{4}\theta_{14}sin^{2}(2\theta_{24})sin^{2}(\theta_{34})$$

#### Simulation

 Current analysis: events were generated using GENIE with Pythia 6 (analysis based on the truth infomation provided by GENIE).



Beam configuration: higher energy neutrino beam optimized for  $\nu_{\tau}$  appearance in the DUNE Far Detector.



### DUNE ND sensitivity to $\nu_{\tau}$ appearance



#### Sensitivity based on GENIE true information

- ▶ To evaluate sensitivity:
  - Separate the ν<sub>τ</sub> events from corresponding backgrounds based on their transverse kinematic differences.
  - ROOT TMVA : Machine Learning algorithm (Boosted Decision Tree Gradient BDTG) to separate  $\nu_{\tau}$  CC from their backgrounds.
- Sensitivity based on event counting where we considered a 67 tons fiducial mass for the ND-LAr and 1.1e+21 P.O.T.





### DUNE ND sensitivity to $\nu_{\tau}$ appearance Preliminary results



- To evaluate selection efficiencies and sensitivity, the case where some smearing is applied to the final state particles 4-momentum was also considered.
- Case 1 without smearing → In the first case, no smearing was applied to the particles four-momentum but only particles above a certain kinetic energy threshold were considered.
  - protons : above 50 MeV.
  - photons : above 30 MeV.
  - pions : above 20 MeV.
  - no neutrons.
- Case 2 with smearing → In addition to the kinetic energy thresholds above, energy and angular resolution smearing applied to particles 4-momentum.

| Species | Threshold [MeV] | Energy<br>Resolution | Angular<br>Resolution [deg] |
|---------|-----------------|----------------------|-----------------------------|
| р       | 50              | $\pm$ 60 MeV         | ± 5                         |
| π+/-    | 20              | ± 10%                | ± 2                         |
| γ       | 30              | ± 10%                | ± 5                         |
| e-      |                 | ± 10%                | ± 2                         |
| $\mu^-$ |                 | ± 10%                | ± 5                         |

 
 Table : Smearing values based on LArTPC performance in the MicroBooNE Experiment (arXiv:2012.09788v3)

In both cases, a systematic uncertainty of 10% was taken into account.



## DUNE ND sensitivity to $\nu_{\tau}$ appearance Preliminary results

Sensitivity considering smearing

Considering all three decay channels and smearing.





### Feedback/Comments and current work

- Simulation tools: how the differences in GiBUU vs GENIE, especially in the final state hadrons will affect the sensitivity
- Tau decayer: need a decayer that effectively accounts for the polarization such as TAUOLA (currently use Pythia 6 which does not account for the polarization).

#### Muon energy reconstruction:

- ND-LAr lose acceptance for muons above ~0.7 GeV due to lack of containment.
- Calculate the muon range in order to apply a muon containment cut and adjust smearing values accordingly.

#### GENIE+Edep-sim simulation (det+reco):

 Sent a request to the ND Production team to produce the required samples for the analysis, using Pythia 8 as a tau decayer, which takes into account the polarization (with reco if ever available).



ND LAr: used a 67 tons fiducial mass out of the 147 tons of the detector so as to leave about 1/2 m from the detector walls.





# Thank you for your attention!

05/13/21 Miriama Rajaoalisoa | Search for anomalous tau neutrino in the DUNE Near Detector

