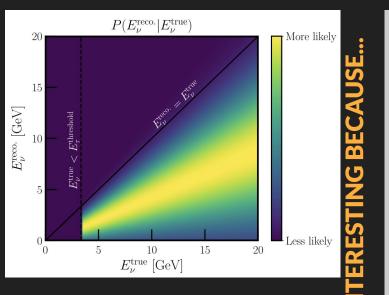
DUNE NuTau Meeting

DIS & Structure Functions $CC-v_{\tau}$ in DUNE

Barbara Yaeggy (05/13/2021)



$CC-v_{\tau}$ scattering in DUNE

- Up to today, $14 v_{\tau}$ have been identified by DONuT (decay of Ds mesons) and OPERA ($v_{\mu} \rightarrow v_{\tau}$ oscillations)
- DUNE will combine bubble chamber quality data with calorimetry and large statistics.
- It will therefore provide an unprecedented opportunity to study the v_{τ} sector

Migration matrix for hadronically decaying T leptons produced via v, charged-current interactions. <u>PhysRevD.100.016004</u>

Due to the large mass of the $\tau \pm$ relative to the e \pm and $\mu \pm$, the threshold for this process to occur is 3.5 GeV.

- To test the Standard Model predictions and check the validity of the lepton universality hypothesis.
- Interaction studies are also required to better understanding of the neutrino oscillation parameters (SHiP, DsTau experiments).
- The interaction cross sections for all three flavors of neutrinos should be known to high accuracy requiring better measurements of the $v_{\tau} / \overline{v}_{\tau}$ cross section.
- IceCube plan to explain the mechanism for production of high-energy neutrinos from astrophysical sources and for the MC simulation of the events, a good control on the cross-section estimated is required.

WHY CHECK OVER STRUCTURE FUNCTIONS?

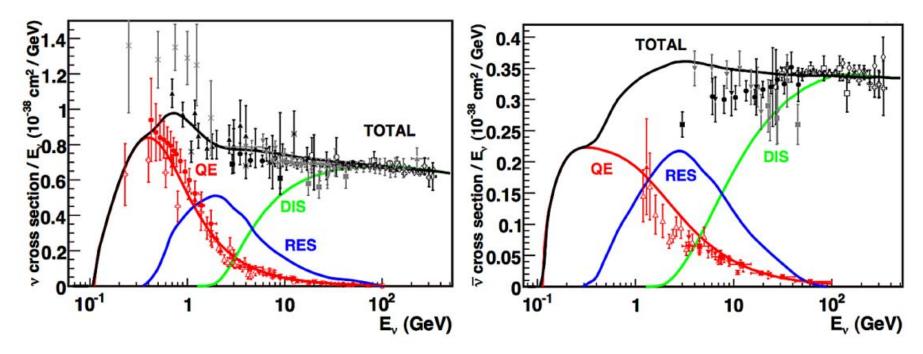
Nucleon Form Factors: basic observables of the nucleon

Nucleon form factors describe the spatial distributions of electric charge and current inside the nucleon

QCD: quarks are bind through gluons to form hadrons (baryons and mesons)

The fundamental understanding of the nucleon form factors in terms of QCD is one of the outstanding problems in nuclear physics

DIS: Deep ($Q^2 >> M^2$) Inelastic ($W^2 >> M^2$) Scattering It plays a key role in determining the partonic structure


- Structure functions are a measure of the partonic structure of hadrons, which is important for any process which involves colliding hadrons.
- They are a key ingredient for deriving partons distributions in nucleons.

Bodek-Yang model aims for describing DIS cross section in all Q² regions

Structure Functions:

 $2xF_{1} = F_{2}$ -xF_{3} = F_{2} xF_{5} = F_{2} F_{4} = 0 also holds when the nucleon target is replaced by a lepton target.

In the 1-10 GeV region all three processes (QE, Resonance & DIS) contribute to neutrino charged current total cross section

- The name DIS here is used loosely for inelastic processes with W > 1.8 GeV (in the continuum at all Q², including Q²=0.
- We need to predict vector parts of both the longitudinal and transverse structure functions (form factors)
- Neutrino scattering data can then be used to constrain the axial structure functions (form factors).
- We also need the nuclear corrections to the vector and axial structure functions.

Differential Cross-Section

The structure functions **F4 and F5**, are pointed out by <u>Albright and Jarlskog</u> are neglected in muon neutrino interactions because of a suppression factor depending on the square of the charged lepton mass divided by the nucleon mass times neutrino energy.

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{\pi (1+Q^2/M_W^2)^2} \bigg((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5 \bigg), \end{aligned}$$

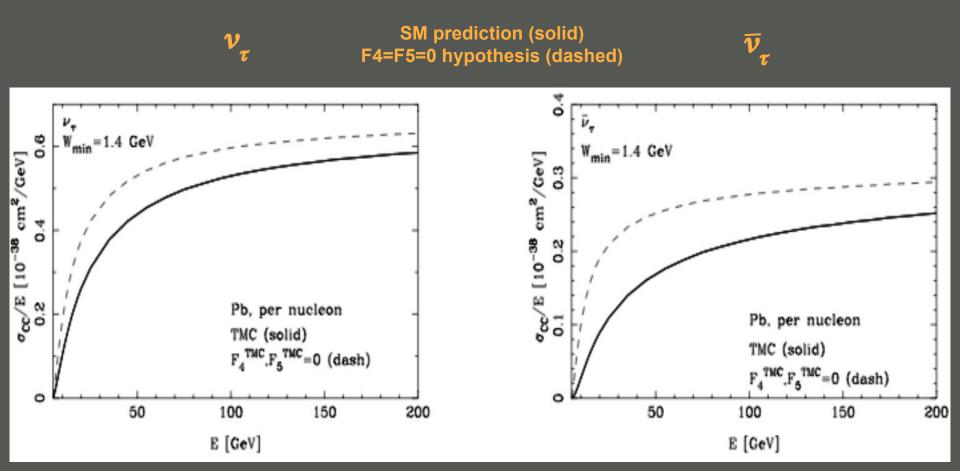
Where:

$$Q^{2} = -q^{2} = -(k - k')^{2},$$

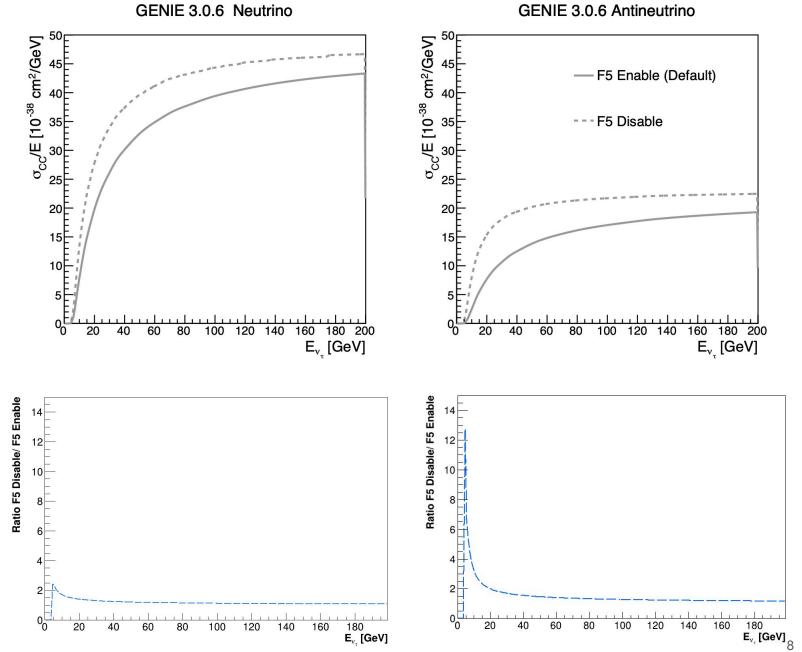
$$x = Q^{2}/2p \cdot q = Q^{2}/2M_{N}\nu,$$

$$y = p \cdot q/p \cdot k = \nu/E,$$

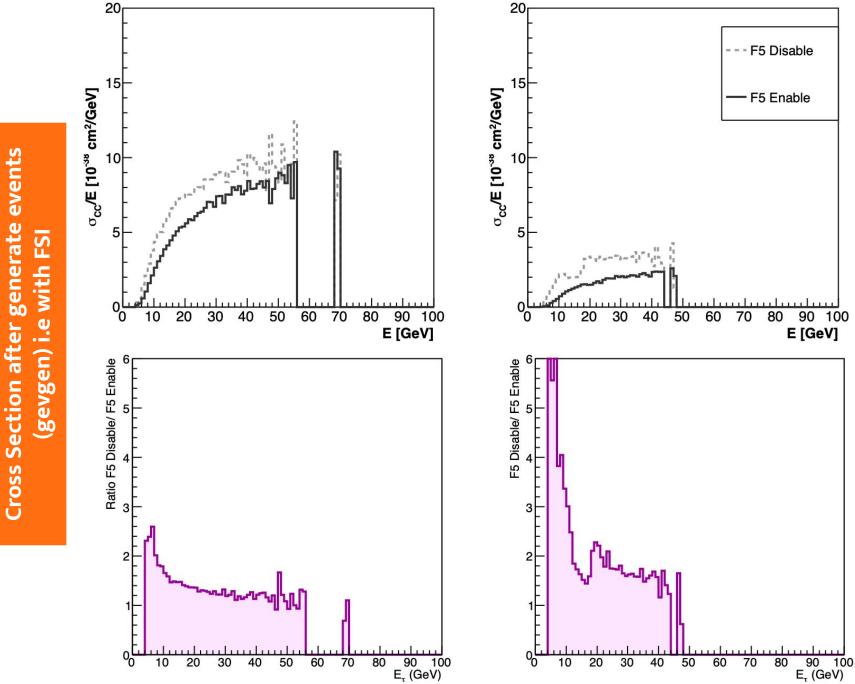
$$W^{2} = (p + q)^{2} = M_{N}^{2} + 2M_{N}\nu - Q^{2},$$


$$\nu = q \cdot P/M_{N} = E - E',$$

$$k'^{2} = m_{l}^{2}, \text{ and } p^{2} = M_{N}^{2}.$$
Fraction of lepton's energy loss of the lepton.
Mass squared of the outgoing lepton & target nucleon respectively.


Given the higher mass value of the τ lepton, F_4 and F_5 contribute, instead, to the tau neutrino cross-section.

At leading order, in the limit of massless quarks and target hadrons, F4 = 0 and 2xF5 = F2, where x is the Bjorken-x variable. NLO show that $F_4 \sim 1\%$ of F_5 arXiv:hep-ph/0605295


The <u>SHip Proposal</u> showed the hypothesis of $F_4 = F_5 = 0$ would result in an increase of the v_{τ} and v_{τ} charged-current DIS cross-sections and consequently, of the number of expected v_{τ} and v_{τ} interactions.

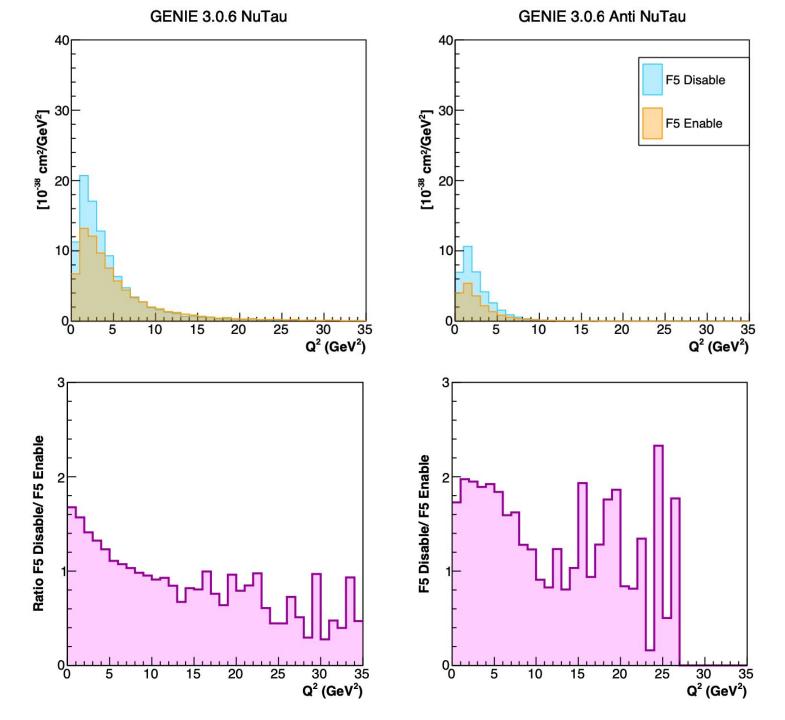
Notice the difference between the cross-sections in the $F_4 = F_5 = 0$ hypothesis and the SM prediction is larger for lower neutrino energies.

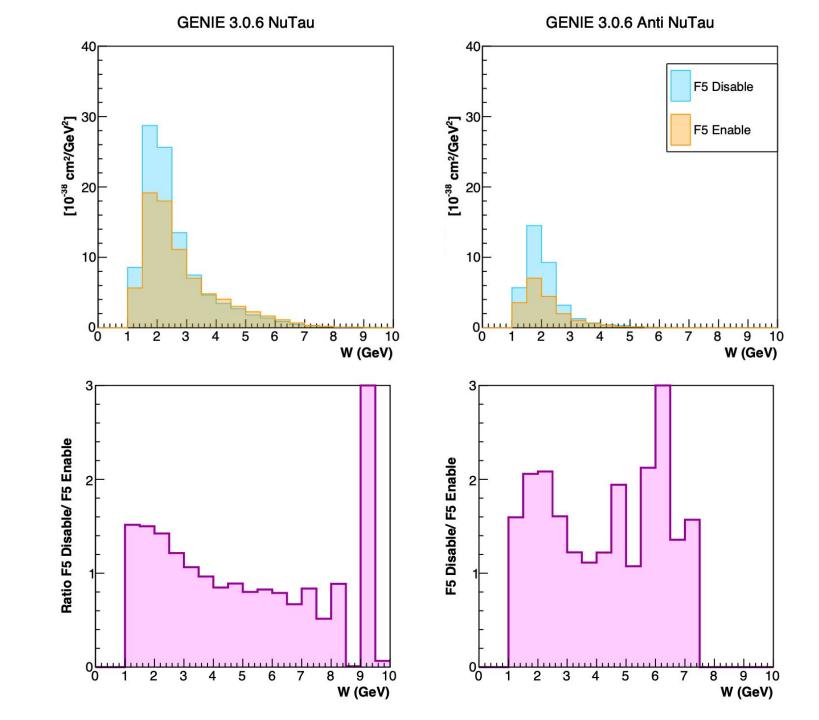
Cross Section from the Splines I.e without FSI

Starting Point: LBNF/DUNE TDR Publication arXiv:2103.04797

- Genie 2.12.10 (with F5 enable, $2xF_5 = F_2$)
- Flux isn't Tau Optimized
- Pandora toolkit
- CVN for event classification (look just for electrons) arXiv:2006.15052

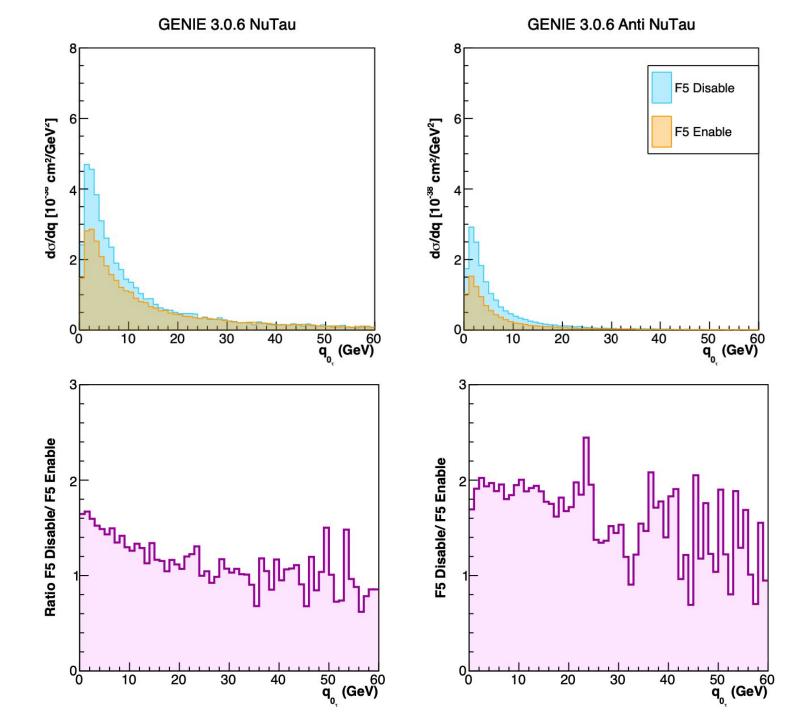
FIRST STEP: check kinematic variables & see if the F_5 hypothesis is fulfilled.

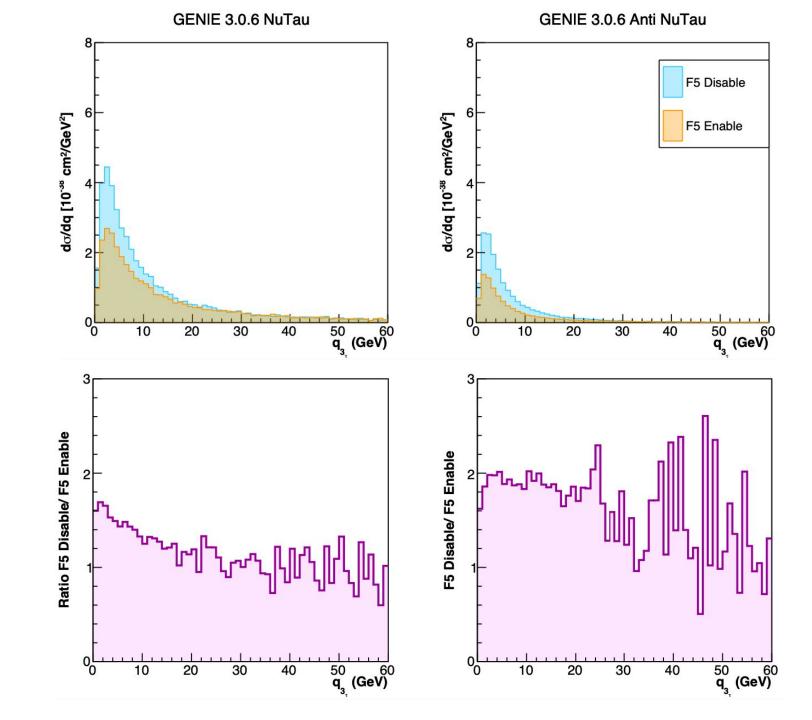

- Genie 3.0.6 (with F5 enable and disable, F₅=0)
- Flux is Tau Optimized
- I'm getting my own splines (DIS)


$$q_0 = E_\nu - E_\mu$$

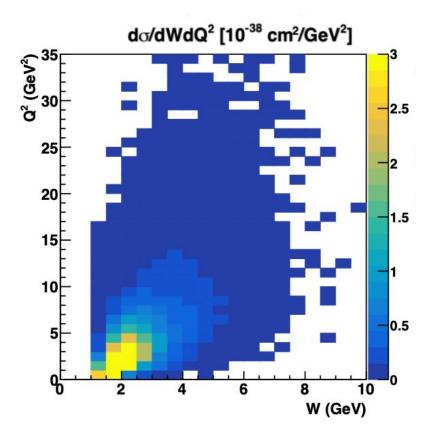
$$q_3 = p_
u - p_\mu \ Q^2 = q_3^2 - q_0^2$$

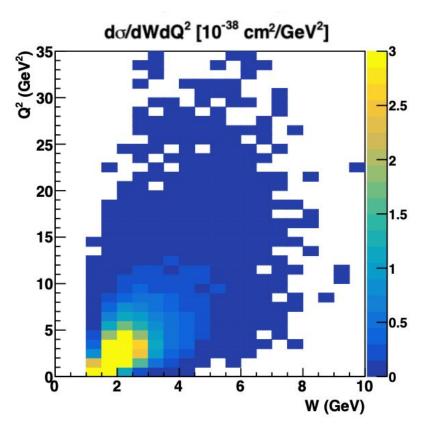
$$W^2 = M^2 + 2Mq_0 - Q^2$$





W Cross Section: Genie 3.06

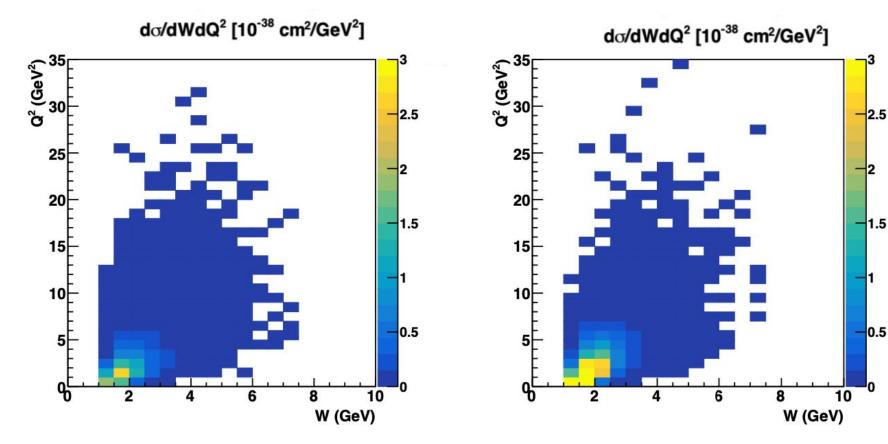




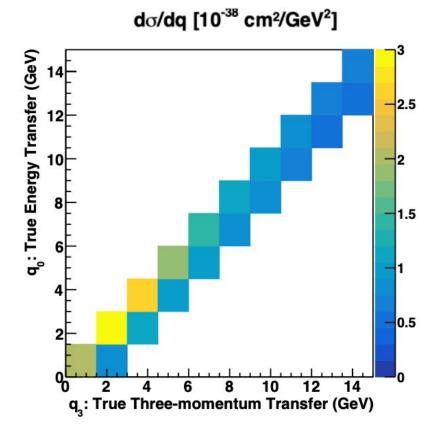
W vs Q² NuTau Cross Sections: F5 Enable vs F5 Disable

F5 Enable

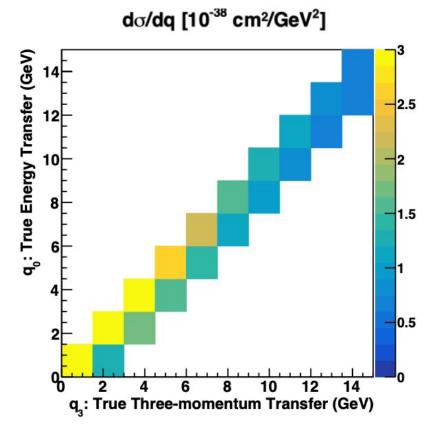
F5 Disable



W vs Q² Anti NuTau Cross Sections: F5 Enable vs F5 Disable

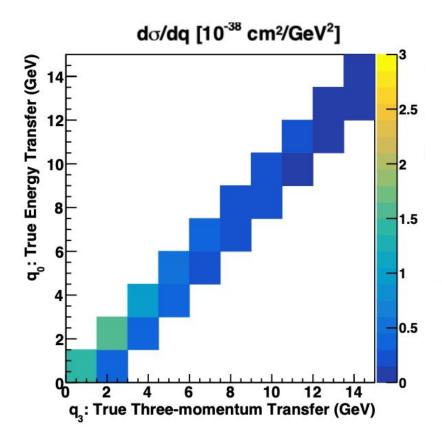

F5 Enable

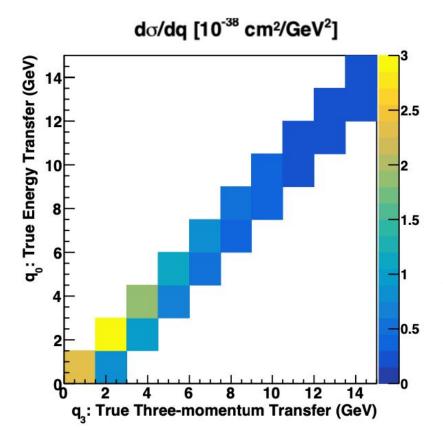
F5 Disable



q₃ vs q₀ NuTau Cross Sections: F5 Enable vs F5 Disable

F5 Enable





q₃ vs q₀ Anti NuTau Cross Sections: F5 Enable vs F5 Disable

F5 Enable

F5 Disable

Starting Point: LBNF/DUNE TDR Publication https://arxiv.org/abs/2103.04797

- Genie 2.12.10 (with F5 enable, 2xF₅ = F₂)
- Flux isn't Tau Optimized
- Pandora toolkit
- CVN for event classification (look just for electrons)

FIRST STEP: check kinematic variables & see if the F₅ hypothesis is fulfilled.

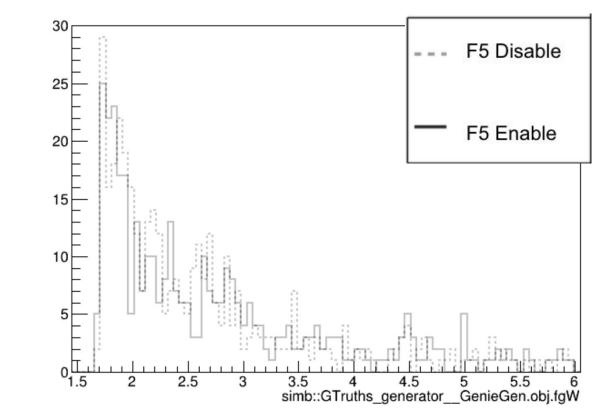
- Genie 3.0.6 (with F5 enable and disable, F₅=0)
- Flux is Tau Optimized
- Im getting my own splines (DIS)

 $egin{aligned} q_0 &= E_
u - E_\mu \ q_3 &= p_
u - p_\mu \ Q^2 &= q_3^2 - q_0^2 \end{aligned}$ $W^2 &= M^2 + 2Mq_0 - Q^2$

SECOND STEP: Get Pandora locally and able to work with my local Genie 3.0.6, F_5 Enable/Disable, get benchmarks.

- Get all the machinery working was whiny.
- At the end you have to "fool" LAr, manually tracked down all the dependencies GENIE requires.

PANDORA: hopefully we will found out results close to the ones shown before


lar -c prodgenie_nutau_dune10kt.fcl -n 1000

- lar -c standard_g4_dune10kt.fcl -n 1000 prodgenie_nutau_dune10kt_gen.root
- lar -c standard_detsim_dune10kt.fcl -n 1000

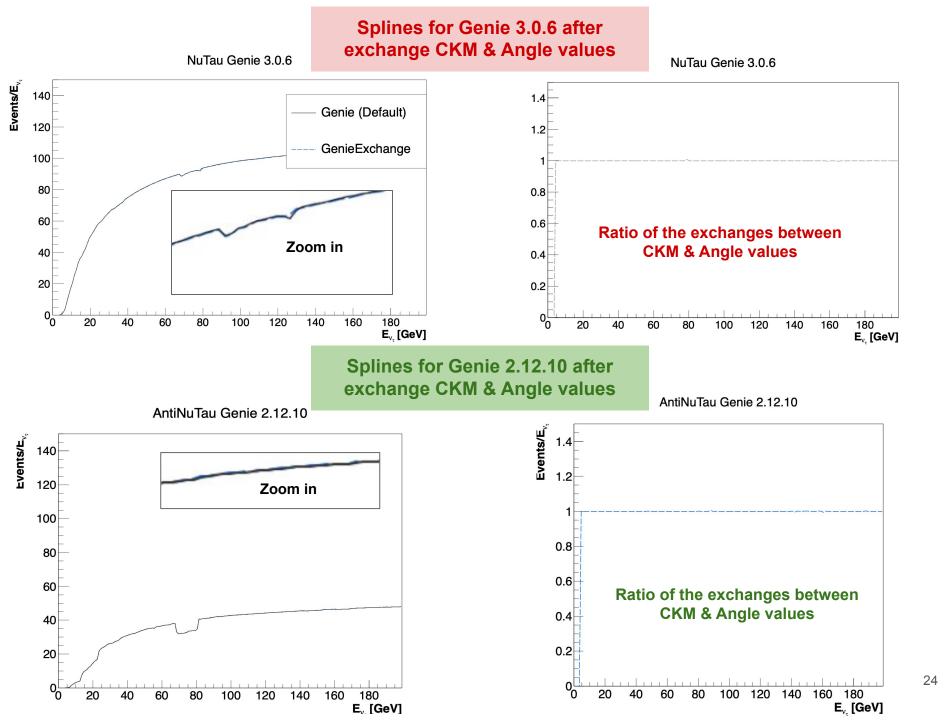
prodgenie_nutau_dune10kt_gen_g4.root

COMMENTS

- Similar to slide 10 result :)
- Official splines are been used (DIS, RES, etc).
- Need to increase the number of events.
- Test the limits of the baseline reconstruction

Thank you!

Genie 2.12.10 Use values listed at the July 2006


particle physics booklet

Genie 3.0.6

Use values listed by Chinese Physics C Vol.40, No. 10 (2016) 100001 Review of Particle Physics

	—
14 ************************************	59 59 58 <param_set name="WeakInt"> 59 .<param_type="double" name="WeinbergAngle"> 0.501716712132 <!-- 0.501568--> 56 .<param_set name="StrongInt"> 56 .<param_set name="StrongInt"> 57 <param_set name="StrongInt"> 58 <param_set name="StrongInt"> 59 <param_set name="StrongInt"> 50 <param name="SU3-P" type="double"/> 0.804 50 <param name="SU3-F" type="double"/> 0.463 </param_set></param_set></param_set></param_set></param_set></param_type="double"></param_set>
25 <param name="CKM-Vus" type="double"/> 0.2257 26 <param name="CKM-Vcd" type="double"/> 0.230 27 <param name="CKM-Vcs" type="double"/> 0.957 28 </td <td>49 48 47 46 45 <param_set name="CKM"> 44 <!--</td--></param_set></td>	49 48 47 46 45 <param_set name="CKM"> 44 <!--</td--></param_set>
30 31 Cabibbo and Weinberg angles 32 > 33 <param name="CabibboAngle" type="double"/> 0.22853207 0.226893 34 <param name="WeinbergAngle" type="double"/> 0.49744211 0.501568 35 </td	43 CKM quark mixing parameters 42 Chinese Physics C Vol.40, No. 10 (2016) 100001 41 Review of Particle Physics 40 > 39 .sparam type="double" name="CKM-Vud"> 0.97417 38 .sparam type="double" name="CKM-Vud"> 0.2248 .sparam type="double" name="CKM-Vud"> 0.2248 .sparam type="double" name="CKM-Vud"> 0.220
37 38 Constants in Feynman-Kislinger-Ravndal model for baryon excitation used in the Rein-Sehgal 39 resonance model 40 > 41 sparam type="double" name="RS-Omega"> 1.05 42 <param name="RS-Zeta" type="double"/> 0.762 42 <param name="RS-Zeta" type="double"/> 0.762 43 <param name="RS-Zeta" type="double"/> 0.762	36 . <param name="CKM-Vcs" type="double"/> 0.995 34 . <param name="CabibboAngle" type="double"/> 0.2277804666882 32 . <param_set> 31 . . 32 . . 33 . . 34 . . 35 . . 34 . . 35 . . 36 . . 37 . . 38 . . 39 <</param_set>
<pre>45 46 Parameters for the Berger-Sehgal / Kuzmin-Lyubushkin-Naumov Delta models. 47 Set to true to use tuning to axial, vector form factors by MiniBoone (J. Nowak) 48 49 <param name="minibooneGA" type="bool"/> true 50 <param name="minibooneGV" type="bool"/> true 51 <pre>52 <!--</pre--></pre></pre>	<pre>28 <!--=- 27 .NUCL-R0 (in fm) is a scale parameter driving the effective nuclear sizes (Ro in R=Ro*A^1/3) 26--> 25sparam type="double" name="NUCL-R0"> 1.4 24 .<param name="NUCL-NR" type="double"/> 3.0 23 22 </pre>
S2 <1 54 Constants in the Bodek-Yang DIS structure function model and in the Bodek-Yang GRV-L0-9* PDF 55 corrections > 57 sparam type="double" name="BY-A"> 0.538 58 sparam type="double" name="BY-CSU"> 0.538 59 sparam type="double" name="BY-CSU"> 0.363 60 sparam type="double" name="BY-CSU"> 0.621 61 sparam type="double" name="BY-CSU"> 0.621 62 sparam type="double" name="BY-CSU"> 0.251 63 sparam type="double" name="BY-CSU"> 0.251 64 sparam type="double" name="BY-CVU"> 0.251 65 sparam type="double" name="BY-CVU"> 0.251 65 sparam type="double" name="BY-CVU"> 0.251 65 sparam type="double" name="BY-CVU"> 0.251 66 sparam type="double" name="BY-CVU"> 0.251 67 sparam type="double" name="BY-CVU"> 0.251 68 sparam type="double" name="BY-CVU"> 0.251 69 sparam type="double" name="BY-CVU"> 0.261 sparam> 60 sparam type="double" name="BY-CVU"> 0.251 sc/param> 60 sparam type="double" name="BY-CVU"> 0.251 sc/param> 61 sparam type="double" name="BY-CVU"> 0.251 sc/param> 62 sparam type="double" name="BY-CVU"> 0.261 sc/param> 63 sparam type="double" name="BY-CVU"> 0.261 sc/param> 64 sparam type="double" name="BY-CVU"> 0.261 sc/param> 65 sparam type="double" name="BY-CVU"> 0.261 sc/param> 66 sparam type="double" name="BY-CVU"> 0.261 sc/param> 67 sparam type="double" name="BY-CVU"> 0.262 sc/param> 68 sc/param type="double" name="BY-CVU"> 0.08817 sc/param> 69 sc/l	<pre><param_set name="Default"> <param_set name="Default"> <param name="CommonParam" type="string"/> CKM,Masses,WeakInt <param name="PDF-Set" type="alg"/> genie::BYPDF/Default <param name="BY-A" type="double"/> 0.538 <param name="BY-B" type="double"/> 0.305 <param name="BY-CSU" type="double"/> 0.363 <param name="BY-CSU" type="double"/> 0.621 <param name="BY-CSU" type="double"/> 0.291 <param name="BY-CSU" type="double"/> 0.291 <param name="BY-CSU" type="double"/> 0.202 <param name="BY-CSU" type="double"/> 0.202 <param name="BY-CVD" type="double"/> 0.202 </param_set></param_set></pre>

Does changes come from just CKM & Angles values differences or from the DIS Model as well?

