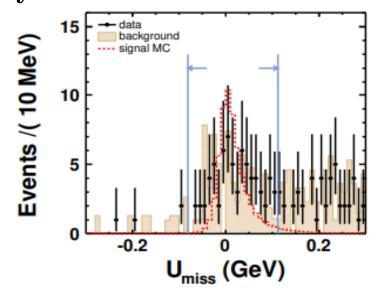
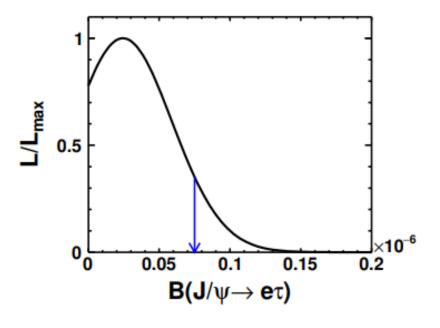

Tau CLFV at BESIII and SCTF

Xiaorong Zhou, Haiping Peng

Data Samples at BESIII

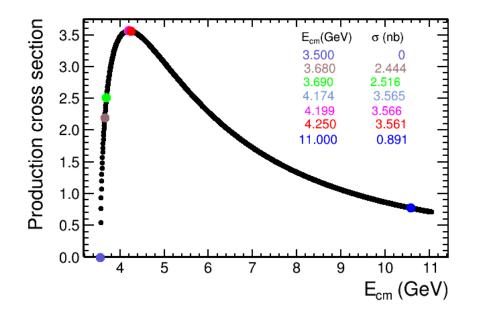

Until 2020

 $N_{\tau\tau}$ produced at BESIII is about 7×10^7 (including ψ' decay), not enough for cLFV decays of tau With 10Billion Jpsi at BESIII, there can be anther way for cLFV searches via with high precision:


 $J/\psi \rightarrow e\tau/e\mu$

LFV decay of $J/\psi \rightarrow e\tau$ at BESIII

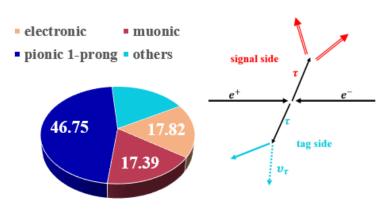
- Reconstructed channel:
 - $J/\psi \rightarrow e^{\pm} \tau^{\mp} \text{ with } \tau^{\mp} \rightarrow \pi^{\mp} \pi^{0} v_{\tau}$
- Dominant background:
 - Radiative Bhabha; $J/\psi \to \pi^+\pi^-\pi^0$
- Observable: $U_{miss} = E_{miss} c |\vec{p}_{miss}|$, select efficiency 20%


arXiv:2103.11540

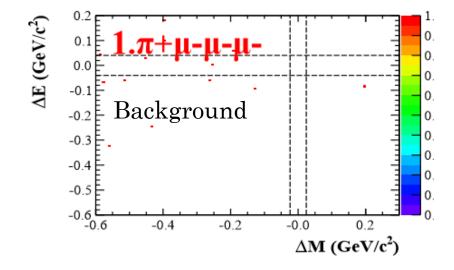
$$\mathcal{B}_{IIL}^{90}(J/\psi \to e\tau) > 7.5 \times 10^{-8}$$

Studies of τ at STCF

- Proposed STCF in China
 - Peaking luminosity $(0.5-1)\times10^{35}$ cm⁻²s⁻¹ at 4 GeV
 - Energy range $E_{cm} = 2-7$ GeV
 - Potential to increase luminosity and realize beam polarization

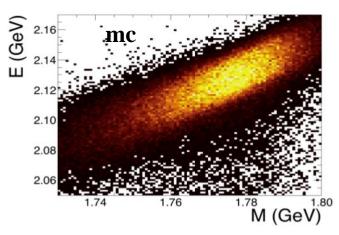


- Peaking cross section locates in 4-5 GeV
- At 4.26 GeV, number of tau pairs per year:


$$N_{\tau\tau} \sim 1.0 \text{ ab}^{-1} \times 3.5 \text{ nb} = 3.5 \times 10^9$$

- $e^+e^- \rightarrow \gamma \tau^+\tau^-$ is not the main background
- Improved π/μ misid rate at STCF

LFV decay of $\tau \rightarrow lll$ at STCF


- \triangleright Signal side: $\tau \rightarrow 3 leptons$
- ightharpoonup Tag side: $\tau \to e v \bar{v}$, $\mu v \bar{v}$, $\pi v + n \pi^0$ ($\mathcal{B}r = 82\%$)
- \triangleright Almost background free, the sensitivity : \mathcal{B}_{IIL}^{90} $(\tau \rightarrow \mu\mu\mu) \sim 1/\mathcal{L}$
- \triangleright Best efficiency ($\tau \rightarrow \mu \mu \mu$): 22.5% (including tag branching fraction)

> STCF with 1ab⁻¹:

$$\mathcal{B}_{UL}^{90}(au o \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{ au au}} \sim 1.5 imes 10^{-9}$$

LFV decay of $\tau \rightarrow \gamma \mu$ at STCF

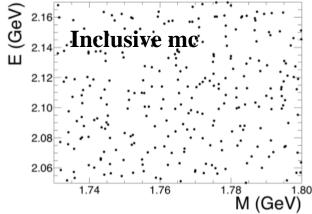
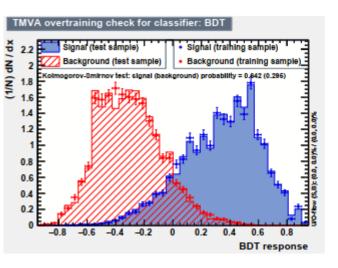
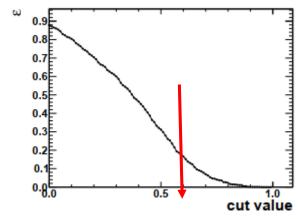




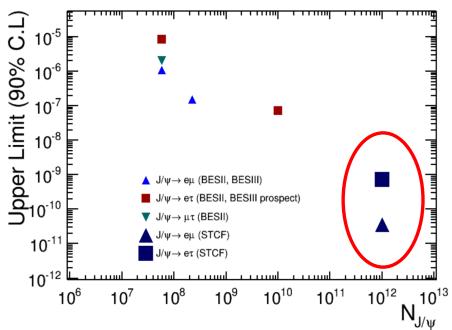
TABLE II. Optimization for pion/muon separation.

	μ eff. at 1 GeV	$UL(\mathcal{B}(\tau \to \gamma \mu))/10^{-8}$
3%	96.7%	1.2
1.7%	92.6%	1.5
1 %	87.3%	1.8

> STCF with 1ab⁻¹:

$$\mathcal{B}_{UL}^{90}(au o\gamma\mu)<rac{N_{UL}^{90}}{2arepsilon N_{ au au}}\sim 1.2 imes 10^{-8}$$

LFV decay of $J/\psi \rightarrow e\tau$ at STCF


• The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) > 10^{-9}$

• At STCF, 1 trillion J/ψ can be obtained per year, taken efficiency from BESIII, the upper limit can be predicted to be:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau) > 7.1 \times 10^{-10}$

• The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further **optimized** with better PID.

