Prospects of Tau CLFV at Bellell

¹University of Louisville, Louisville, Kentucky 40292 ²University of Mississippi, University, Mississippi 38677 ³Deutsches Elektronen–Synchrotron, 22607 Hamburg, Germany

Tau CLFV Coffee Hour 28 May 2021

Sw. Banerjee¹, M. Hernández Villanueva², and A. Rostomyan³

Golden modes for discovery

Improvement of 2 orders of magnitude expected for Belle II!

The Belle II Physics Book, Prog. Theor. Exp. Phys. (2019), 123C01

Golden modes for discovery

- One of the factors pushing up the sensitivity of probes is the increase of the luminosity
- Equally important is the increase of the signal detection efficiency
 - particle identification, refinements in the analysis techniques...

high trigger efficiencies; improvements in the vertex reconstruction, charged track and neutral-meson reconstructions,

Signal-background discrimination using kinematics of the event

µID - the most powerful discriminating variable

Momentum dependent optimisation of the muID requirement

 $\rightarrow P_{\mu} < 0.7 \text{ GeV}$

 μ do not reach the μ detector (KLM)

→
$$0.7 < P_{\mu} < 1 \text{ GeV}$$

 \rightarrow µ reach KLM but not many layers are crossed

 $\rightarrow P_{\mu} > 1 \text{ GeV}$

μ reach KLM and many layers are crossed

Other requirement used @Belle but not @Belle II:

μ veto on tag track

 $\rightarrow P_{\mu} > 0.6 \text{ GeV}$

Higher efficiency is foreseen @Belle II than @Belle or @BaBar

