DUNE VD/PD Cryogenic Digital Optical Links DUNE Collaboration Meeting

May 20, 2021

1

Outline

Brief review of the strategy

Testing results of TOSAs (laser diodes, monitor photodiodes)

Testing of laser driver ICs

Electrical testing

Combined electrical/optical testing

Plans for improving results

Testing of LED/Photologic solution

Sidebar: Optical spectrum of laser diodes at 295 K and 77 K

Discussion

Some Background Digital Optical Links vs Analog Optical Links

Digital Optical Links are characterized by...

```
Noise margin advantages (+)
```

```
Flexibility in coding (error detection/correction) (+)
```

Signal to quantization noise is unavoidable (-)

Much industry experience and many components (at room temperature) (+)

Time Division Multiplexing may be employed (+)

Analog Optical Links are characterized by ...

Lower cost and complexity in typical installations (+)

Higher signal to noise requirements typically imply higher power (-)

Transfer function must be well characterized to insure extraction of original signal (calibration) (-)

Strategy: Digital Optical Links Test Program 295 K and 77 K

Control of Modulation Current

Cumulative TOSA Laser Diode Testing Summary FP-1310-4I-LCC (4 Gbps rated)

Results obtained with 50 μ m core Multimode Fiber and Matrix LC Latch LD1 results obtained with laser mounted on ADN2526 Test Board (controlled by laser driver BSET circuit) LD2 results obtained with laser directly connected to trim pot circuit

TOSA Monitor Photodiode Testing Summary FP-1310-4I-LCC (4 Gbps rated)

Results obtained with 50 μm core Multimode Fiber and

Matrix LC Latch

Testing with ADN2526 Laser Driver Custom LN2 Board

Calculations in Extra Slides

Laser Diode Driver

ADN2526 Laser Driver Electrical Testing Bias Setting Performance (BSET)

Results agree nicely from one device to the next Results for one device tested show little variation when immersed in LN2

ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature

77 K

Peak to Peak Amplitude = 215 mV

Trig External Direct

Setup Utilities Applications Help Triggered

加加加在般加加亚和

Peak to Peak Amplitude = 210 mV

10 Gbps **PRBS7 Electrical Input Pattern** MSET = 75 mV ; Ibias = 19 mA

Tektronix

App.

▼ 3.900mV 🗒 ÷

ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature

Peak to Peak Amplitude = 267 mV

10 Gbps Peak to Peak Amplitude = 281 mV PRBS7 Electrical Input Pattern MSET = 100 mV ; Ibias = 19 mA

ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature

295 K

77 K

Peak to Peak Amplitude = 321 mV

Peak to Peak Amplitude = 321 mV

PRBS7 Electrical Input Pattern MSET = 125 mV ; Ibias = 19 mA

10 Gbps

ADN2526/FP-1310-4I-LCC Combined Testing Making the Optical Connection

MSET = 30 mV Peak to Peak Amplitude = 438 μ W

MSET = 40 mV Peak to Peak Amplitude = 530 μW

MSET = 50 mV Peak to Peak Amplitude = 617 μ W

MSET = 60 mV Peak to Peak Amplitude = 705 μW

MSET = 70 mV Peak to Peak Amplitude = 793 μW

MSET = 80 mV Peak to Peak Amplitude = 908 μW

MSET = 90 mVPeak to Peak Amplitude = 1012 μ W

MSET = 100 mV Peak to Peak Amplitude = 1124 μ W

ADN2526 Board 1 Dynamic Performance Summary vs Modulation Setting

Lack of corresponding optical data was due to issues securing the laser diode to the board

ADN2526 Board 2 OMA Pattern (clock-like) at 10 Gbps

Clearly some signal integrity improvements will be desirable

ADN2526/FP-1310-4I-LCC Combined Testing Next Steps – Laser Diode Approach

- 1. Improved Test Board Design: signal integrity
 - a. No electrical test load and output SMAs will be used. The design will only support laser diodes for output results.
 - b. We will put a cryogenically suitable 3.3 low dropout voltage regulator on the board for noise reduction.
 - c. We will "hard wire" fixed resistors (no pots with long leads) for setting MSET and BSET (with a dual footprint option if we need it).
 - d. I have some references on SFP+ module layout guidelines that we should review as this is not unlike those designs.
 - e. Incorporate feedback from optical signal (TOSA monitor photodiode)
- 2. Improved Test Board Design: mounting of laser diodes
 - a. Option 1 based on laser diodes with leads. This could be used with pigtailed lasers that we have ordered as well as with the current version and the LC latch.
 - b. Option 2 based on laser diodes with flexible circuits and controlled impedance traces. I will be placing an order for devices of this type from TrueLight if I can't find the same laser diode we have been testing with in this format (so far, no luck)
- 3. We plan on testing the effects of the use of (larger core) multimode fiber on bit error rate performance over representative lengths (warm and cold) (calculated RMS pulse broadening ~ 1.4 ps over 20 meters of MMF)
- 4. We must pursue other solutions to the optical connection problem (Matrix latches no longer available)

Alternative Approach: 156 Mbps Link over POF – Test Board

156 Mbps Link over POF – Cold Tx to Warm Rx

156 Mbps Link over POF – Warm Tx to Cold Rx

SFP+ Rx Channel – Warm Tx to Cold Rx PRBS7, 4 Gbps

T = 295 K

T = 77 K

Samples which are in the eye opening prevent the BER test from synchronizing

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Parameters for Varshni's equation have been found for InGaAsP*

Compute the 0 K band gap: Using $E_g(300 \text{ K}) = 0.949 \text{ eV}$, solve for $E_g(0 \text{ K})$ using Varshni's equation: $E_g(0 \text{ K}) = 1.019 \text{ eV}$

For InGaAsP*:

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta} \qquad \qquad \alpha = 4.9 \times 10^{-4} \text{ eV/K}^2$$

$$\beta = 327 \text{ K}$$

Plot photoluminescence wavelength using:

*Ref 1: "Temperature Dependence of Photoluminescense of n-InGaAsP" H. Temkin, et. al., Journal of Applied Physics 52 (1981)

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Calculated: ~ 1222 nm at 75 K

Measured: Max Peak ~ 1316 nm at room temperature

Discussion