DUNE VD/PD Cryogenic Digital Optical Links DUNE Collaboration Meeting

May 20, 2021

Outline

Brief review of the strategy
Testing results of TOSAs (laser diodes, monitor photodiodes)
Testing of laser driver ICs
Electrical testing

Combined electrical/optical testing
Plans for improving results
Testing of LED/Photologic solution
Sidebar: Optical spectrum of laser diodes at 295 K and 77 K
Discussion

Some Background

Digital Optical Links vs Analog Optical Links

Digital Optical Links are characterized by...
Noise margin advantages (+)
Flexibility in coding (error detection/correction) (+)
Signal to quantization noise is unavoidable (-)
Much industry experience and many components (at room temperature) (+)
Time Division Multiplexing may be employed (+)

Analog Optical Links are characterized by ..
Lower cost and complexity in typical installations (+)
Higher signal to noise requirements typically imply higher power (-)

Transfer function must be well characterized to insure extraction of original signal (calibration) (-)

Strategy: Digital Optical Links Test Program 295 K and 77 K

Cumulative TOSA Laser Diode Testing Summary FP-1310-4I-LCC (4 Gbps rated)

FP-1310-4I-LCC Laser Diode Tests

Results obtained with $50 \mu \mathrm{~m}$ core Multimode Fiber and Matrix LC Latch
LD1 results obtained with laser mounted on ADN2526 Test Board (controlled by laser driver BSET circuit)
LD2 results obtained with laser directly connected to trim pot circuit

TOSA Monitor Photodiode Testing Summary
FP-1310-4I-LCC (4 Gbps rated)
ADN2526 Laser Driver

Results obtained with $50 \mu \mathrm{~m}$ core Multimode Fiber and
Matrix LC Latch

Testing with ADN2526 Laser Driver Custom LN2 Board

Room temperature testing first, followed by testing in LN2 Electrical Testing Optical Testing (with Finisar FP-1310-4I-LCC and MMF)

To establish Bias Current

For $\mathrm{BSET}=0.22 \mathrm{~V}(\mathrm{Ibias}=20 \mathrm{~mA})$

For MSET $=0.13(\operatorname{lmod}=10 \mathrm{~mA})^{*}$

ADN2526 Laser Driver Electrical Testing Bias Setting Performance (BSET)

Results agree nicely from one device to the next
Results for one device tested show little variation when immersed in LN2

ADN2526 Laser Driver Electrical Testing - Board 1 Modulation Setting Performance (MSET) and Temperature

Peak to Peak Amplitude $=210 \mathrm{mV}$

10 Gbps
PRBS7 Electrical Input Pattern MSET = 75 mV ; $\mathrm{Ibias}=19 \mathrm{~mA}$

ADN2526 Laser Driver Electrical Testing - Board 1 Modulation Setting Performance (MSET) and Temperature

Peak to Peak Amplitude $=267 \mathrm{mV}$

ADN2526 Laser Driver Electrical Testing - Board 1 Modulation Setting Performance (MSET) and Temperature

295 K
 77 K

Peak to Peak Amplitude $=321 \mathrm{mV}$

10 Gbps
PRBS7 Electrical Input Pattern
MSET = 125 mV ; lbias = 19 mA

Peak to Peak Amplitude $=321 \mathrm{mV}$

ADN2526/FP-1310-4I-LCC Combined Testing Making the Optical Connection

ADN2526/FP-1310-4I-LCC Combined Testing - Board 1
 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

MSET $=30 \mathrm{mV}$
Peak to Peak Amplitude $=438 \mu \mathrm{~W}$

$$
\text { MSET }=40 \mathrm{mV}
$$

Peak to Peak Amplitude $=530 \mu \mathrm{~W}$

ADN2526/FP-1310-4I-LCC Combined Testing - Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

Teltronix $-\boldsymbol{X}$ Eile Edit View Setup Uutilies Applications Help Triggered

9:49.AM 5/2/2021

MSET $=50 \mathrm{mV}$
Peak to Peak Amplitude $=617 \mu \mathrm{~W}$

$$
\mathrm{MSET}=60 \mathrm{mV}
$$

Peak to Peak Amplitude $=705 \mu \mathrm{~W}$

ADN2526/FP-1310-4I-LCC Combined Testing - Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

Eile Edit View Setup Utilities Applications Help Triggered

Tektronix $-\boldsymbol{x} \mid$ Eile Edit View Setup Uutities Applications Help Triggered
Tektronix $-\underline{x}$

MSET $=70 \mathrm{mV}$
Peak to Peak Amplitude $=793 \mu \mathrm{~W}$

$$
\text { MSET }=80 \mathrm{mV}
$$

Peak to Peak Amplitude $=908 \mu \mathrm{~W}$

ADN2526/FP-1310-4I-LCC Combined Testing - Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

Eile Edit View Setup Uutilies Applications Help Triggered

Teltronix $-\boldsymbol{X} \mid$ Eile Edit View Setup Uutities Applications Help Triggered
Tektronix $-\underline{x}$

MSET $=90 \mathrm{mV}$
Peak to Peak Amplitude $=1012 \mu \mathrm{~W}$

MSET $=100 \mathrm{mV}$
Peak to Peak Amplitude $=1124 \mu \mathrm{~W}$

ADN2526 Board 1

Dynamic Performance Summary vs Modulation Setting

ADN2526 Board 2

OMA Pattern (clock-like) at 10 Gbps

ADN2526/FP-1310-4I-LCC Combined Testing Next Steps - Laser Diode Approach

1. Improved Test Board Design: signal integrity
a. No electrical test load and output SMAs will be used. The design will only support laser diodes for output results.
b. We will put a cryogenically suitable 3.3 low dropout voltage regulator on the board for noise reduction.
c. We will "hard wire" fixed resistors (no pots with long leads) for setting MSET and BSET (with a dual footprint option if we need it).
d. I have some references on SFP+ module layout guidelines that we should review as this is not unlike those designs.
e. Incorporate feedback from optical signal (TOSA monitor photodiode)
2. Improved Test Board Design: mounting of laser diodes
a. Option 1 based on laser diodes with leads. This could be used with pigtailed lasers that we have ordered as well as with the current version and the LC latch.
b. Option 2 based on laser diodes with flexible circuits and controlled impedance traces. I will be placing an order for devices of this type from TrueLight if I can't find the same laser diode we have been testing with in this format (so far, no luck)
3. We plan on testing the effects of the use of (larger core) multimode fiber on bit error rate performance over representative lengths (warm and cold) (calculated RMS pulse broadening ~ 1.4 ps over 20 meters of MMF)
4. We must pursue other solutions to the optical connection problem (Matrix latches no longer available)

Alternative Approach: 156 Mbps Link over POF - Test Board

Comments:

1. This pair to be delivered through on-board SMAs 2. This board requires only 5 V power.
2. Two of these boards will be needed to implement a downlink or uplink test. One board would be in the dewar while the oth Electronics are on order.
. 20 m sample of POF is in hand

156 Mbps Link over POF - Warm Tx to Cold Rx

SFP+ Rx Channel - Warm Tx to Cold Rx PRBS7, 4 Gbps

Samples which are in the eye opening prevent the BER test from synchronizing

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Parameters for Varshni's equation have been found for InGaAsP*

Compute the 0 K band gap:
Using $\mathrm{E}_{\mathrm{g}}(300 \mathrm{~K})=0.949 \mathrm{eV}$, solve for $\mathrm{E}_{\mathrm{g}}(0 \mathrm{~K})$ using Varshni's equation: $\mathrm{E}_{\mathrm{g}}(0 \mathrm{~K})=1.019 \mathrm{eV}$

```
For InGaAsP*:
\[
\alpha=4.9 \times 10^{-4} \mathrm{eV} / \mathrm{K}^{2}
\]
\[
\beta=327 \mathrm{~K}
\]
```

Plot photoluminescence wavelength using:

$$
\lambda=\frac{h c}{E_{g}(0)-\frac{\alpha T^{2}}{T+\beta}}
$$

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Calculated:
~ 1222 nm
at 75 K

Measured:
Max Peak
~ 1226 nm in LN2

Measured:
Max Peak
~ 1316 nm
at room
temperature

Discussion

