

DUNE FD-2 PDS R&D

Integrated Cold Electronics Readout Scheme and Redundancy Concepts

20 May 2021

Ryan Rivera

DUNE-US FD-2 PDS Level 2 Manager

Outline

- Cold Electronics Integration R&D Path to Prototype
- Surviving 30 years

2021 R&D Path to Prototype Strategy

- 1. Launch small working groups (i.e., one or two experts) for each component in the system to find a viable candidate.
- 2. Pair-wise integration of viable candidates:
 - E.g., pair power-over-fiber with component
 - E.g., pair SiPMs with passive and active ganging
 - E.g., pair active ganging with analog transmitter
- 3. Time permitting, consider other viable candidates and optimization (i.e., small working groups continue in parallel)
- 4. Demonstrate two synchronized prototype detector tiles with readout at CERN Cold Box Test in October.
- 5. Demonstration sets the stage for December DOE reviews and any desired baseline changes leading into 2022.

Cold Component List

Component	Who
XARAPUCA	Milano/Madrid/Prague, Maura S, Francesco T, Hucheng C
Detector Tile Form-factor	Dave W (w/CSU), Carla C, Bill P, Gustavo C, Dante T, Dave C
Passive/Active Ganging	Dante T, Gustavo C, Dave C
Digital Tx	Alan P, Dave C
Analog Tx	Sabrina S, Jaime D
ADC	Andres QP, Divya S, Jonathan E, Dave N (UK), Hucheng C (BNL)
SERDES/FPGA	Andres QP, Divya S, Jonathan E, Dave N (UK), Hucheng C (BNL)
Optical Rx	Alan P, Divya S
Sync Distribution	Jonathan E
Power Solutions	Bill P, UIUC

- Actively looking to engage additional collaborators in component working groups!
 - Especially where names are repeated and less than 3

R&D Path to Prototype Milestones

Baseline Date	Activities/Milestone
May 2021	T4 Milestone: Pair-wise Short-term Cold Test Validation
June 2021	Launch pre-prototype PCB and CAD designs. Order long lead-time components.
July 2021	T4 Milestone: All-channel Detector + Waveform Transmission prototype validated in short-term cold test.
August 2021	T4 Milestone: Two synchronized tile electronics prototypes short-term validated in cold.
September 2021	T4 Milestone: Ready for CERN Cold Box Test
November 2021	T4 Milestone: CERN Cold Box Tests of two synchronized prototypes complete
January 2023	T4 Milestone: All components validated for 30-years in cold

- In 2022:
 - 2 to 4 additional CERN Cold Box runs
 - Optimize for power draw and redundancy
 - 30-year cold qualification studies

Surviving 30-years

- How do we give ourselves the best chance to survive?
 - 1. Peer-reviewed qualification results
 - Component-level (possible), System-level (not possible?)
 - Leverage ProtoDUNE and Horizontal Drift designs and expertise
 - 2. <u>Redundancy</u>

What are we worried about?

- Worried about NMOS (majority carriers are e⁻), not PMOS
 - Kinetic energy acquired higher for e⁻ than holes for same E-field
- "Hot carrier" effects in CMOS
 - Only a problem when ON (conducting).. For digital only "conducting" is on clock edges/switching.
 - All FPGAs are CMOS
 - FPGA Fabric qualified with invertor ring oscillator and monitoring current draw and frequency variation (< 3%)
 - Smaller feature size seems less affected (but not obvious)
 - Prefer dipping voltage supply (not as easy for smaller feature size)
 - In general, components qualified by stressing supply voltage and monitoring key parameters.
- Not worried about Op-amps, if they work once.
- All bipolar transistors, if they work, they should keep working.

Redundancy Concepts

- 1. Detector signal handling
- 2. Digital data transmission
- 3. Clocking
- 4. Data reduction
- 5. SiPM ganging topology

1. Redundant Detector Signal Handling

Consider doing both analog and digital path (only one powered on):

• One analog Tx per tile

9

- 32 tiles per FPGA (2x 16-channel ADS52J90 ADCs). 10 FPGAs for entire cathode.
 - − Could double buffer for 32 tiles → 64 ADC channels. Same power.

Possible 32-tile Cold Electronics Topology

- Do not need duplicate PoF, switch power between the two
 - Enough power for 32 analog transmitters roughly equivalent to 2 ADCs + FPGA?

Possible 1-tile Cold Electronics Topology

- Further redundancy if can reduce power overhead of FPGA/ADC and use 1 per tile to not have replication costs blow up.
 - Tradeoffs of centralized vs distributed

2. Redundant Digital Data Transmission

- Assuming it is hard to qualify dedicated circuitry for 30-years, avoid dedicated circuitry; (extreme) examples:
 - Fabric locations can be rotated to 30 spots within FPGA, fabric already qualified in ProtoDUNE for 1 year.
 - GPIO Tx can be rotated among 30 pins, GPIO already qualified in ProtoDUNE for 1 year.

• Hard to eliminate risk of unknown single points of failure for FPGA on 30-year timescale.

3. Clocking

• If all else fails, can we run cold digitizers asynchronously?

- To synchronize data from two async sources (t0 and t1), do timestamp translation:
 - dt0 can be measured in units of warm system time, on average for more accuracy, and dt0 is used to get t0 timestamp step in warm system time.
 - dt0 = d − a \rightarrow t0 timestamp step = <dt0>/1000
- Same with t1: dt1 = c b \rightarrow t1 timestamp step = <dt1>/1000
- In this way, the warm electronics can convert timestamps from multiple FPGA sources to a single warm system time.
- 1ns GPIO should be resolvable into Warm system time with <10ns resolution.
 - e.g. 8b10b K-char marker could be used every 1000 counts (5 characters for each 2ns)

4. Data Reduction

• Is 1 Gbps enough digital data transmission bandwidth?

- 1000 samples at 100MHz is likely enough for a sample window (10µs)
- 20b encoded sample \rightarrow 20Kb per sample window (can stack-up ~300 in BRAM)
- Sample rate?
 - 1KHz per tile \rightarrow 20Mbps per tile \rightarrow 50 tiles to get to 1 Gbps
 - ProtoDUNE saw single PE at <100KHz
 - Could neighbor FPGAs share threshold crossing for more individual higher threshold trigger?
 - Continuous readout would be 2 Gbps per channel (100Msps * 20b)

Cathode Neighbor Topology

- 10 FPGAs each handling 32 tiles, for example.
- Local group trigger
 - Share threshold crossing with neighbors
 - Allows for raising of global threshold
 - Use optical fiber to isolate from HV variation over large cathode distances

5. SiPM Ganging Topology

• Even/Odd xARAPUCA SiPM distribution to active ganging may be better than North/South half.

Conclusion

- Please reach out if interested in joining R&D effort
 - 2021: analog and digital prototypes
 - 2022: 30-year qualification and optimization
- Active engagement in interfaces for CERN Cold Box and ProtoDUNE2 is critical to leave open doors.
- Redundancy Concepts
 - 1. Detector signal handling
 - 2. Digital data transmission
 - 3. Clocking
 - 4. Data reduction
 - 5. SiPM ganging topology
 - 6. Any other ideas?

Establishing WBS Baseline

- Baseline:
 - 320 Cathode tiles & 320 Membrane tiles
 - Cold analog readout, warm digitizers, power-over-fiber
 - Requires <u>partial</u> 70% field-cage transparency for 40% membrane coverage

Fall-back Option:

- 720 Membrane-only tiles
- Cold analog readout, warm digitizers, copper power supplies
- Requires <u>full</u> 70% field-cage transparency

Active 2021 R&D Program

- Targeting two prototypes for end-of-year CERN Cold Box Test
 - analog readout prototype 8 twisted cables
 - digital readout prototype

8 twisted cables from each tile

from each tile

20

CRYO CAPTAN