# **FNAL Superconducting RF Program**





**Bob Kephart** 

## **‡** Fermilab

#### Goals of the Fermilab SRF Program

- Support the strategic goals of the U.S. HEP program
  - Energy frontier: International Linear Collider (& Muon Collider)
  - Intensity frontier: Project X
- Develop low-beta SRF cavities and cryomodules for the acceleration of high intensity Proton beams
  - Subharmonics of 1.3 GHz
  - SRF starting from very low beam energy of 2.1 MeV (New!)
- Develop β=1 SRF cavities and cryomodules for ILC and/or the Project X pulsed linac (3-8 GeV)
- Develop related SRF infrastructure and technology that can be applied to future Office of Science projects
  - Infrastructure and expertise at Fermilab and U.S. partners
  - U.S. Industrialization to permit fabrication of SRF projects



## Context of SRF Activity at Fermilab

- The FNAL SRF effort ramped up substantially in 2006 in support of ILC R&D (thru at least FY12)
- Because of past emphasis on ILC R&D → There is substantial ongoing activity on 1.3 GHz technology
- Adoption of a 3 GeV CW linac followed by a 3-8 GeV pulsed linac for Project X has added new challenges
  - Need six different families of cavities optimized for changing velocity
    (β) of Protons
  - Four different frequencies (162.5, 325, 650, 1300 MHz)
  - Five of these cavities are completely <u>new</u> for Project X (vs 2 for SNS)
- The development of these cavities is a major new effort
- Fermilab SRF activities are managed as an <u>integrated</u> program to avoid duplications and insure efficiency



## PX SRF Linac Technology Map

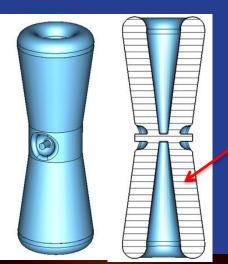
| β <b>=0.11</b>            | β <b>=0.</b> 2                  | 22      | β=0.4      | β=       | -0.61   | β <b>=</b> ( | 0.9           | β <b>=1.0</b>     |
|---------------------------|---------------------------------|---------|------------|----------|---------|--------------|---------------|-------------------|
| $\leftarrow$              | ∕                               |         | CW         | <u> </u> |         |              | $\rightarrow$ | Pulsed            |
| 162.5 MHz                 | : 3                             | 325 MF  | lz         | <b>_</b> | 650     | MHz          |               | 1.3 GHz           |
| 2.1-10 Me\                | / 10                            | )-160 N | /leV       |          | 0.16-   | 3 GeV        |               | 3-8 GeV           |
| Section                   | F                               | req     | Energy (Me | V)       | Cav/mag | /CM          |               | Туре              |
| HWR (β <sub>G</sub> =0.1  | 11) <sup>-</sup>                | 162.5   | 2.1-10     |          | 9 /6/1  |              | Half W        | /ave, solenoid    |
| SSR1 (β <sub>G</sub> =0.  | 22)                             | 325     | 10-42      |          | 16/8/ 2 | 2            | Single S      | Spoke, solenoid   |
| SSR2 (β <sub>G</sub> =0.  | 47)                             | 325     | 42-160     |          | 36/20/  | 4            | Single S      | Spoke, solenoid   |
| LB 650 (β <sub>G</sub> =  | =0.61)                          | 650     | 160-460    |          | 42 /14/ | 7            | 5-cell el     | liptical, doublet |
| HB 650 (β <sub>G</sub>    | HB 650 (β <sub>G</sub> =0.9) 65 |         | 460-3000   |          | 152/19/ | 19           | 5-cell el     | liptical, doublet |
| ILC 1.3 (β <sub>G</sub> = | 1.0)                            | 1300    | 3000-8000  | )        | 224 /28 | /28          | 9-cell e      | elliptical, quad  |

#### RDK, US-UK Workshop, Jan 2012


4

#### **‡** Fermilab

ILC


#### **Current Activities**

- Project X:
  - 162.5 Cavity and Cryomodule Development (ANL)
  - 325 MHz Cavity & Cryomodule Development
  - 650 MHz Cavity & Cryomodule Development
- ILC and Project X
  - 1300 MHz: Cavity gradient improvement, CM development, and industrialization
  - 1300 MHz: SRF Infrastructure Operations
- Additional SRF Infrastructure Construction
- RF unit test facility at New Muon lab
- CryoModule Test Facility (CMTF)
- Design, Construction of Project X Injector Experiment (PXIE)



5







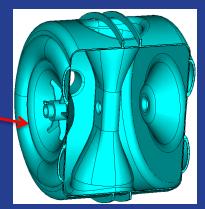


6

## 162.5 and 325 MHz Cavities

• Three designs cover the beta range 0.07  $\rightarrow$  0.52

#### HWR ( $\beta$ = 0.11 ) Half Wave Resonator


- EM and Mechanical Design starting at ANL
- Very similar to cavities & CM already manufactured by ANL
- Optimize to achieve tight packing in PX front end

#### SSR1 ( $\beta$ = 0.22 ) Single Spoke Resonator

- Started under HINS program and is therefore more advanced
- Two prototypes have been fabricated by industry, processed in collaboration with ANL, and tested at Fermilab
- Two cavities in fabrication at IUAC-Delhi (Fall 2011)
- Ten cavities in fabrication by US industry (4 have arrived)
- One cavity dressed with He vessel, coupler tuner
- Tests in progress (next slides)

#### **SSR2(** $\beta$ = 0.47 )

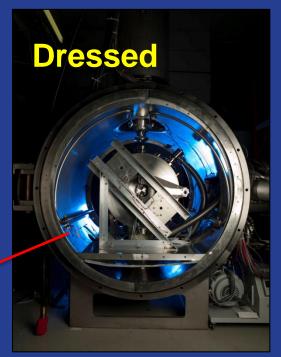
- EM design complete
- Awaiting Mechanical Design
- Prototype in FY12-FY13

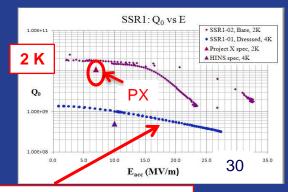


#### 🛟 Fermilab

#### New 325 MHz Test Capabilities Developed




SSR-1 prototypes were tested in the VTS-1 vertical dewar (normally used for 1.3 GHz cavity testing) with the addition of new electronics and tooling.



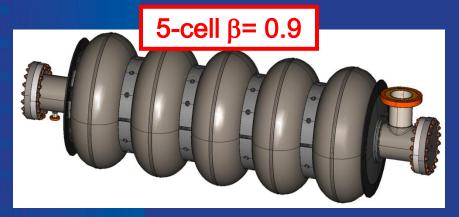

Spoke Cavity Test Cryostat completed and commissioned.

Enables 4 K testing of "dressed" 325 MHz single-spoke resonators including RF couplers, tuners, and magnetic shielding

Upgrades for 1.8 K operation in process



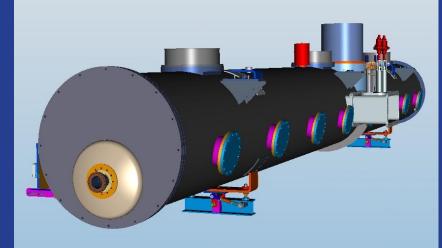


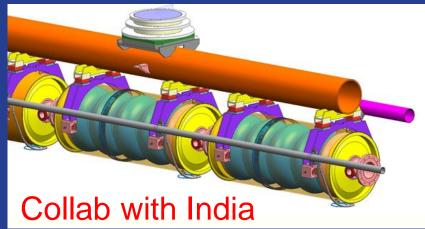

**Fermilab** 

**Dressed cavity at 4.8K** 



# **650 MHz Electromagnetic Cavity Design** $\beta = 0.6 \& 0.9$ Five-Cell Cavities is Complete


Cavity prototypes under construction

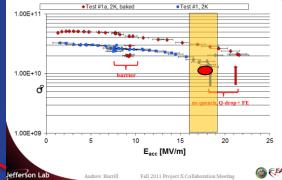


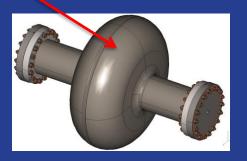

 Stiffening rings located to minimize dF/dP while maintaining tunability



- CW CM conceptual design advanced
  - stand-alone 8-cavity cryomodule
  - Overall length: ~12 m, 48 " O.D.






#### 650 MHz Cavity Prototypes

- Single-cell designs complete: for  $\beta = 0.6 \& 0.9$  cavities
- Prototypes fabricated:
  - Single-cell β = 0.6: 2 prototypes@JLab, meet PX goals
    -6 more ordered industry
  - Single-cell  $\beta$  = 0.9: 5 cavities ordered from industry
  - Prototypes at both  $\beta$  are also being fabricated in India
  - Two 5-cell  $\beta$  = 0.9 cavities ordered from industry
- Infrastructure modifications: for 650 MHz in process
  - FNAL: Vertical Test Stand: Electronics, amplifier, tooling
  - FNAL: Cavity handling & HPR tooling, etc.
  - FNAL: Optical inspection system modifications
  - ANL: New electro-polishing tool
  - Industry: EP/BCP capability in US industry









## 1300 MHz Development for ILC and PX

#### Goals: ILC SRF goals remain

- S0 >35 MV/m bare cavities
- S1 31.5 MV/m dressed cavities in a ILC Cryomodule
- S2 Beam test of full ILC RF unit (CM, klystron, modulator)
- Build and test ~ 1 CM/yr
- All of this will benefit the 3-8 GeV pulsed linac for Project X

#### Accomplishments:

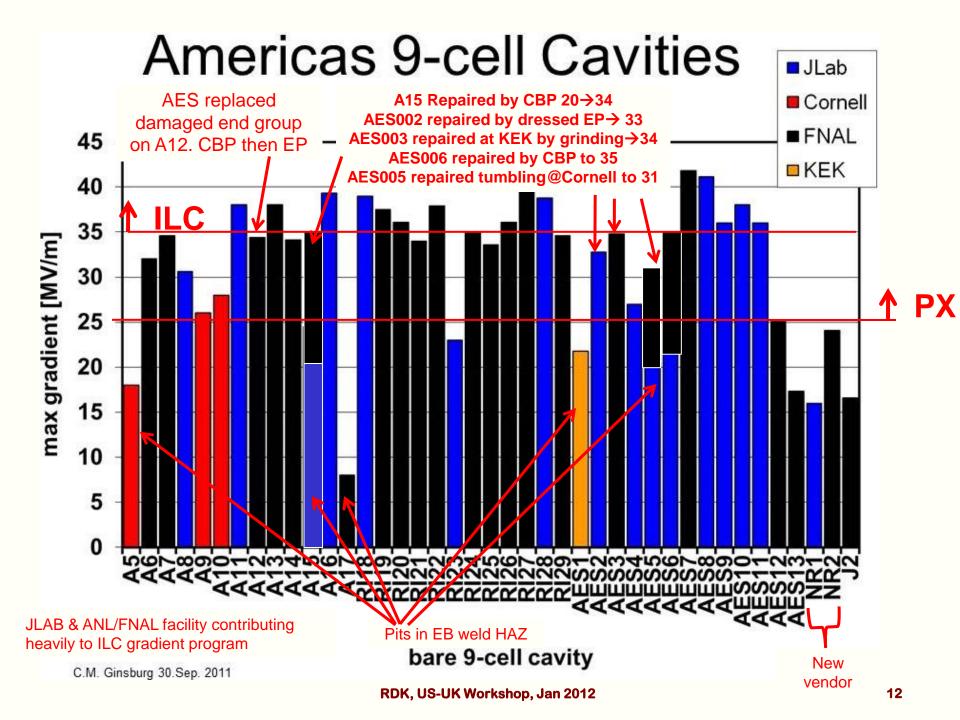
- Excellent progress on gradient improvement
- ANL/FNAL EP facility: world class throughput & yield
- 19 Dressed cavities, HTS tests in progress for CM2
- Parts for 4 more 1.3 GHz cryomodules (ARRA funds)
- Cost reduction (e.g. tumbling vs. EP, & cavity repair.)
- Excellent progress on all of these
- CM1 cold and under test at NML (All 8 cavities powered)
- CM2 nearly complete



### Current 1300 MHz cavity status

| # ordered             | 90 |
|-----------------------|----|
| # received            | 50 |
| # processed           | 43 |
| # vertically tested   | 42 |
| # dressed             | 19 |
| # horizontally tested | 14 |
| # CM2 qualified       | 8  |

- Full suite of facilities in use
- New vendors being developed






Cryomodule 2: cold mass parts from Europe in hand, 8 dressed cavities tested >35 MV/M, string assembly

U.S. built ILC/PX Cryomodule Parts CM 3, 4, 5, 6 for NML in hand, funded by ARRA





## FNAL SRF Infrastructure

#### **Goals**:

- Build generic SRF infrastructure at FNAL
  - Particularly large cryogenic & RF systems, cavity & cryomodule assembly and test facilities, etc. that are hard for industry to provide
- Develop SRF capability in U.S. Industry

#### Accomplishments:

- Vertical test stands (VTS1) fully operational, VTS 2/3 dewars delivered installation in progress
- Horizontal Test Stand (HTS1): fully operational
  - Tests 1300 MHz dressed cavities for CM's, tuner studies, LLRF, etc
  - HTS-2: Design in collab with India (2 dressed 650/1300 CW cavities)
- ANL/FNAL joint cavity processing facility (EP, BCP, HPR, clean rooms)
- Cryomodule Assembly Facility & other infrastructure
- Excellent progress on NML and CMTF (slides)



#### New FNAL SRF infrastructure

**Cavity tuning** 

machine

MP9 Clean Room







VTS









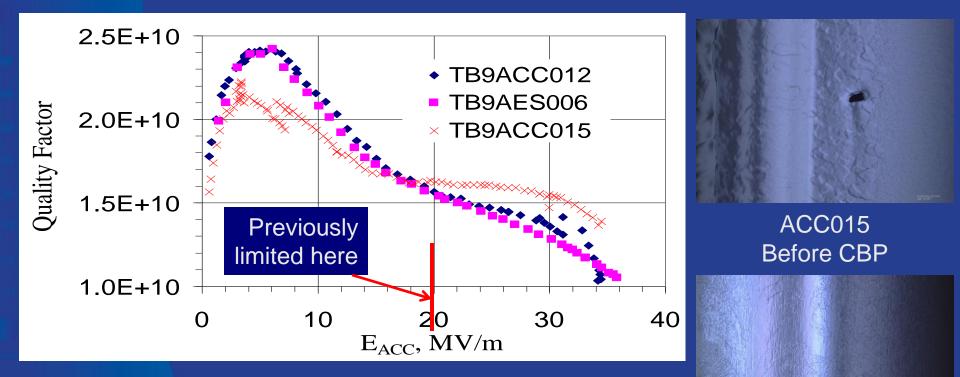


New Vacuum Oven for 1300 MHz

#### ANL/ FNAL cavity processing infrastructure



#### **FNAL CBP Machine**




C. Cooper Recipe Media

Tumbles 2 cavities/run, 2 complete cycles/week

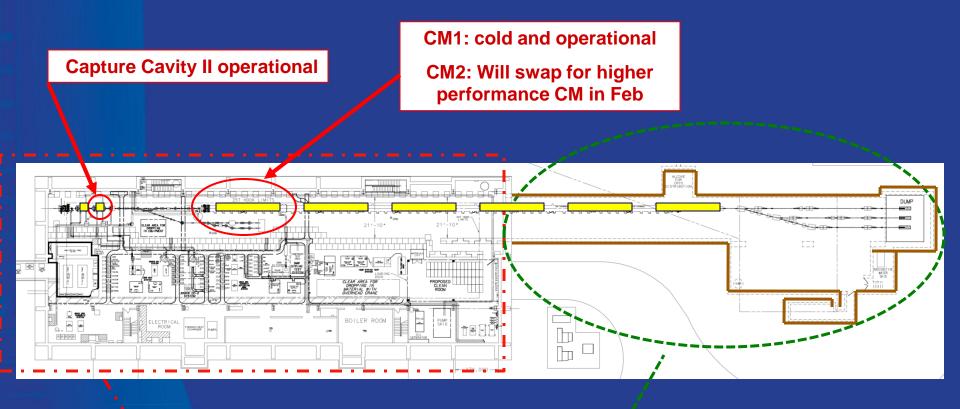


## 9-Cell Cavity Results – CBP Repairs



- Break through !
- Demonstrated cavity gradients > 35 MV/M
- Drastic reductions in acid use.
- Demonstrated as a cavity repair method.

After CBP and 40 microns EP – Pit completely removed


#### 🛟 Fermilab

## **NML: RF Unit Test Facility**

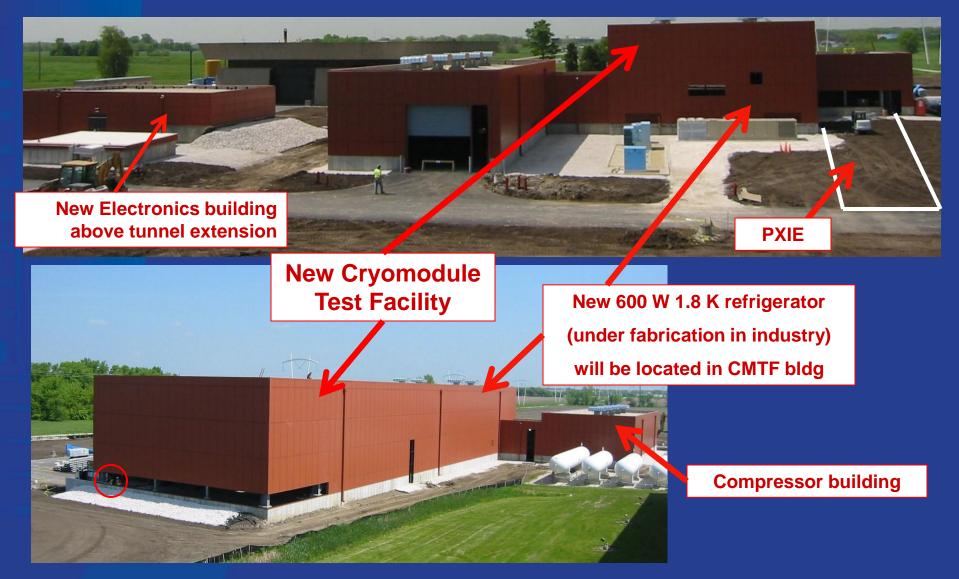




## **NML Status and Expansion**



**New Underground Tunnel Expansion** 


(Space for up to 6 Cryomodules (2 RF Units), AARD Test Beam Lines) Civil construction complete (doubles tunnel length to 160 M)

Phase 1 NML Building

19 RDK, US-UK Workshop, Jan 2012

#### 🛟 Fermilab

### New NML Buildings (ARRA funded )





## Integrated SRF Schedule - Cryomodules

|                                     |      |  |  | 1             |        |               | 1    |                    | I                 |                    |            | <u> </u>               |           |             |                   |                  |        | <b>—</b>        |                  |              |          | T                |         |        |              | 1               |          |             | ΗT     |  |  |  |
|-------------------------------------|------|--|--|---------------|--------|---------------|------|--------------------|-------------------|--------------------|------------|------------------------|-----------|-------------|-------------------|------------------|--------|-----------------|------------------|--------------|----------|------------------|---------|--------|--------------|-----------------|----------|-------------|--------|--|--|--|
| U.S. Fiscal Year                    | 2008 |  |  |               | FY09   |               | FY10 |                    | 0                 | FY11               |            | FY12                   |           |             | FY13              |                  |        | FY14            |                  |              | FY15     |                  |         |        |              | $ \rightarrow $ |          |             |        |  |  |  |
| 1.3 GHz                             |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   |                  |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| CM1 (Type III+)                     |      |  |  | С             | CM fab |               |      | Insta<br>CN        |                   | C                  | M1 Test    |                        | work?     |             |                   |                  | ?      |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| CM2 (Type III+)                     |      |  |  | Omnibus Delay |        | Omnibus Delay |      | Ore                | der Cav a         | & CM Part          | s          | i                      | Process & | VTS/Dres    | s/HTS             | CM<br>fab        |        |                 | swap?            | •<br>        |          |                  |         |        |              |                 |          |             |        |  |  |  |
| СМЗ (Туре IV)                       |      |  |  | D             | esign  | sign Ord      |      | ler Cav & CM Parts |                   |                    |            | CM<br>fab              |           |             | install           |                  |        | ILC S2 test     |                  |              |          |                  |         |        |              | also su         |          | suppor      | ts AAF |  |  |  |
| CM4 (Type 2/5/8 ILC or PX)          |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   | CM<br>fab        |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| CM5 (Type 2/5/8 ILC or PX)          |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   |                  |        | CM<br>fab       |                  | st in<br>MTF |          |                  | swap?   | 4      | ( RF         |                 |          |             |        |  |  |  |
| CM6 (Type 2/5/8 ILC or PX)          |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   |                  |        |                 |                  | CM<br>fab    |          | st in<br>MTF     | swap?   | Uni    | it test      |                 |          |             |        |  |  |  |
| NML Extension Building              |      |  |  |               |        | Design        | ı    | C                  | onstructio        | n                  |            |                        |           |             |                   |                  |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| NML Beam                            |      |  |  |               |        |               |      |                    |                   |                    |            | e injector.<br>ponents | /install  | beam        |                   | B                | eam A  | vailabl         | e to R           | F Unit       | t test ( | ехсер            | t durii | ng ins | stallati     | on pe           | riods    |             |        |  |  |  |
| CMTF Building                       |      |  |  |               |        |               | D    | esign              |                   | Cons               | truction   |                        |           |             |                   |                  |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| 650 MHz                             |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   |                  |        |                 |                  |              |          |                  |         |        |              | Proj            | ect )    | ( cor       | nstruc |  |  |  |
| Single Cell Design & Prototype      |      |  |  |               |        |               |      |                    |                   | ·                  | Pro        | ototypes               |           | ess &<br>TS |                   |                  |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| LE 650 five cell Design & Prototype |      |  |  |               |        |               |      |                    |                   |                    |            |                        | In        | dustry I    | Prototy           | pes (4)          |        |                 |                  | Indu         |          | Protot<br>10)    | ypes    | Proce  | ess & V      | TS/Dres         | ss/HTS   | LE (<br>rea |        |  |  |  |
| HE 650 five cell Design & Prototype |      |  |  |               |        |               |      |                    |                   |                    | Industry F | rototypes              | (2+ 2)    |             | ess & T<br>L/FNAI | est I            | ndustr | / Proto<br>(10) | types            |              |          | cess 8<br>ress/H |         |        | 650<br>ady   |                 |          |             |        |  |  |  |
| HE_650_CM1                          |      |  |  |               |        |               |      |                    |                   | Conce              | pt Design  | C                      | Design    |             | Order             | 650 C            | M Par  | ts              |                  |              |          |                  |         |        | 0 CM<br>ss'y |                 | HE<br>CM | 650<br>Test |        |  |  |  |
| 325 MHz                             |      |  |  |               |        |               |      |                    |                   |                    |            |                        |           |             |                   |                  |        |                 |                  |              |          |                  |         |        |              |                 |          |             |        |  |  |  |
| SSR1 Design & Prototype             |      |  |  |               |        |               |      |                    | Procu<br>(14 in p | rement<br>rogress) | Р          | rocess &               | VTS/Dr    | ress/S      | IF                | SSR1<br>ready    | ,      | Proce           | ss & V           | /TS/Dr       | ress/S   | STF              |         |        |              |                 |          |             |        |  |  |  |
| SSR2 Design & Prototype             |      |  |  |               |        |               |      |                    |                   |                    |            | Desi                   | ign       |             | Pro               | ototyp           | e(2)   |                 |                  | cess 8       |          |                  | s/STF   | SS     | SR2 re       | ady             |          |             |        |  |  |  |
| CM325_SSR1_proto CM                 |      |  |  |               |        |               |      |                    |                   | Conce              | pt Design  | Desi                   | ign       | Orde        | 325 (             | CM Par           | ts     | Proce<br>(as r  | ss & T<br>equire |              |          | 5 CM<br>ss'y     |         |        |              | @ PX            |          |             |        |  |  |  |
| 162.5 MHZ                           |      |  |  |               |        |               |      |                    |                   |                    |            | Desi                   | ign       | Pro<br>cavi |                   | Proces<br>(as re |        |                 | rder c<br>CM Pa  |              | 162      | 2 CM /           | \ss'y   |        | HV           | VR CN<br>PX     |          | @           |        |  |  |  |
|                                     |      |  |  |               |        | i             | 1    | _                  | i                 |                    | 1          |                        | 1         |             |                   | 1                |        |                 |                  | 1            | 1        |                  |         | 1      | 1            |                 |          |             |        |  |  |  |





### Summary

- SRF program at FNAL supports both ILC & Project X strategic goals
  - Demonstrated world class performance of 1300 MHz cavities and CM
  - RF unit test facility and ASTA @NML will be a powerful new asset
  - Developing additional 162.5, 325, & 650 MHz cavity and cryomodule designs in support of Project X
- Application of SRF to the low energy extreme of 2.1 MeV is a new and significant development in high intensity hadron linacs
  - Project X Injector Experiment (PXIE) is a major new thrust
- Program leverages existing FNAL infrastructure (bldgs, cryo, etc)
  - Augmented with SRF and ARRA infrastructure funds
  - Lots of infrastructure is now in operation and is being used effectively
- Significant effort to transfer SRF technology to U.S. Industry
- Excellent team in place with growing SRF expertise



# Collaborations (~20 MOU's)

- ANL: EP development and cavity processing
- Cornell: Cavity processing & test, materials R&D
- DESY: 3.9 GHz, cryomodule kit, FLASH
- Dubna: cavity development, bimetallic joints
- KEK: Cavity R&D, ATF II
- MSU: Cavity cost reduction, hydro-form, TIG
- TJNL: EP cavity processing and test, PX cavities
- INFN: tuners, HTS, NML gun cathodes
- TRIUMF: Vendor development (PAVAC)
- SLAC: RF power, klystrons, couplers
- CERN, DESY, KEK, INFN, etc: Type IV CM design
- BARC, RRCAT, IUAC, VECC (India) CM design, cavities, infrastructure
- China: Peking U, IHEP, cavity development (developing)
- UC,NW,NHMFL, UN Reno, Cornell, DESY, KEK...: Materials R&D
- LBNL: NGLS ???



## Integrated SRF Schedule - Infrastructure

| U.S. Fiscal Year                   | 2008             | FY09                    |                 | FY10            |                            | FY11      |               | F           | Y12                  | FY13              |                     |             |                      | FY14                  |                    | F                     | Y15          |  |
|------------------------------------|------------------|-------------------------|-----------------|-----------------|----------------------------|-----------|---------------|-------------|----------------------|-------------------|---------------------|-------------|----------------------|-----------------------|--------------------|-----------------------|--------------|--|
|                                    |                  |                         |                 |                 |                            |           |               |             |                      |                   |                     |             |                      |                       |                    |                       | $\downarrow$ |  |
| ANL/FNAL cavity handling upgrades  |                  |                         |                 |                 |                            |           | 650           | )           | Upgrade<br>Complete  |                   |                     |             |                      |                       |                    |                       |              |  |
| 650 MHz VTS-1 Upgrade              |                  |                         |                 |                 |                            |           | 650           | )           | Upgrade<br>Complete  |                   |                     |             |                      |                       |                    |                       |              |  |
| CAF CM Assembly Upgrade            |                  |                         | prade<br>nplete |                 |                            |           |               |             | 325 Upg<br>Com       | plete             |                     |             | 650                  | Upgrade<br>Complete   |                    |                       |              |  |
| 650 MHz dressing CAF Upgrade       |                  |                         |                 |                 |                            |           |               |             | 650 MHz              |                   | Jpgrade<br>Complete |             |                      |                       |                    |                       |              |  |
| VTS 2 & 3 Upgrade                  |                  |                         |                 | VTS             | 2/3 Procu                  | ire       | VTS           | 2 VTS3      | VTS 2/3<br>Complete  |                   |                     |             |                      |                       |                    |                       |              |  |
| HTS 2 cryostat                     |                  |                         |                 |                 |                            | Design    |               |             | Procur               | e India           |                     | HTS<br>Comp |                      |                       |                    |                       |              |  |
| HTS 2 cave, cryo dist              |                  |                         |                 |                 | [                          | Design    | Pro           | ocure       |                      |                   |                     |             |                      |                       |                    |                       |              |  |
| NML Injector & BL                  |                  | Design                  |                 | Procu           | ire                        |           |               | install & c | commission           |                   |                     |             |                      |                       | NML Beam a         |                       |              |  |
| NML Refrigerator                   |                  |                         |                 | Design          |                            | Procu     |               |             |                      | install<br>commis |                     |             |                      | 500 W                 | 500 W superfluid F |                       |              |  |
| NML Cryo Distribution System       | Omnibus<br>Delay |                         |                 |                 |                            |           |               |             |                      |                   |                     |             | CD<br>Comp           |                       |                    |                       |              |  |
| NML SLAC Refrigerator              |                  |                         |                 |                 | SLAC Ref Int<br>(as req'd) | erface re | efurbisl      |             | nstall &<br>mmission |                   |                     |             |                      |                       | SL                 | AC Refrig             | g Oper       |  |
| CMTF CM Test Stand (1.3 GHz)       |                  |                         |                 |                 |                            |           |               | Procure Ind |                      | lia               |                     |             | 1.3 CMTS<br>Complete |                       |                    |                       |              |  |
| 650 MHz CM Test Stand              |                  |                         |                 |                 |                            |           |               |             | Procure India        |                   |                     |             |                      | 650 CI<br>Comp        |                    |                       |              |  |
| CMTF Cryo Distribution System      |                  |                         |                 |                 |                            |           |               |             | Procur               | e India           | I                   |             |                      | CMTF Dist<br>Complete |                    |                       |              |  |
| MDB Spoke Test Facility 2k Upgrade |                  |                         |                 |                 |                            |           | 325           | 5           | 325 HTS<br>complete  |                   |                     |             |                      |                       |                    | Des/add<br>4th Refrig |              |  |
| 325 MHz CM Test Stand @ NML        |                  |                         |                 |                 |                            |           |               |             |                      |                   | F                   | rocure      | FNA                  | L                     | 325 CM<br>Comple   |                       |              |  |
| AES 1300-650 EP / 325 BCP facility |                  |                         |                 | Design          | F                          | rocuremen | nt            |             | EP/BCP<br>ready      |                   |                     |             |                      |                       |                    |                       |              |  |
| JLAB VTS cryo upgrade              |                  |                         | JLab Up<br>Des  | og Pro          | ocure                      |           | Upgra<br>Comp |             |                      |                   |                     |             |                      |                       |                    |                       |              |  |
| ANL EP/BCP Upgrade                 |                  | ANL 1300 EP rea<br>Oper |                 | y Design 650 El | Р                          | Procure   |               |             | EP<br>ady            |                   |                     |             |                      |                       |                    |                       |              |  |

Shows only remaining items, many completed items are now not shown (VTS-1, HTS, STF, CAF)

