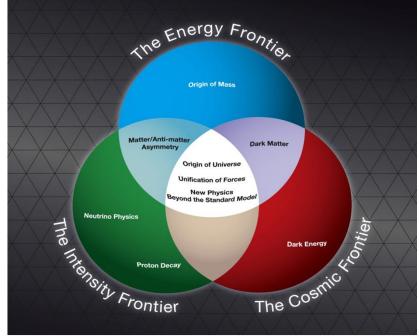
Project X Overview

Steve Holmes UK-US Workshop January 13, 2012

- Fermilab Strategic Plan
- Project X Reference Design
- R&D Plan
- Status and Timeline


http://projectx.fnal.gov

Project X Fermilab Long Range Plan

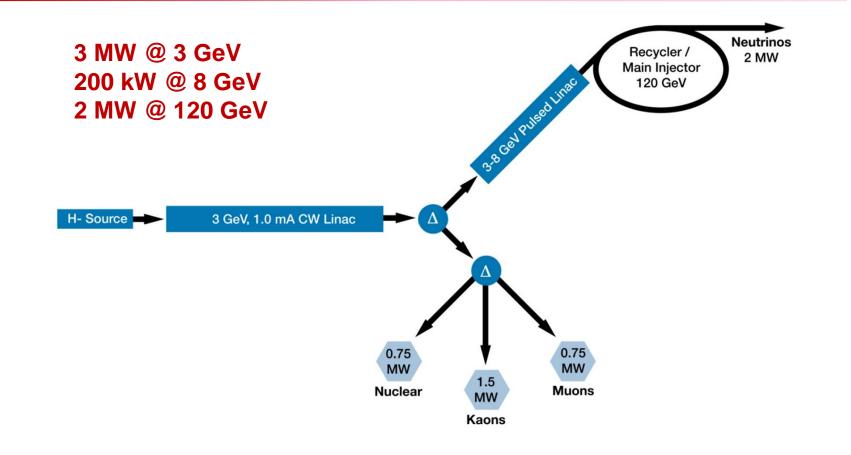
Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics. Fermilab is fully aligned with the strategy for U.S. EPP developed by HEPAP/P5.

⇒ The Fermilab strategy is to mount a world-leading program at the <u>intensity frontier</u>, while using this program as a bridge to an <u>energy frontier</u> facility beyond LHC in the longer term.

Project X is the key element of this strategy

Mission

- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- Low energy, MW-class proton beams for kaon, muon, and neutrino based precision experiments
 - <u>Operations simultaneous</u> with the long baseline neutrino program
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
 - ~4 MW at ~5-15 GeV; low duty factor
- Possible missions beyond EPP



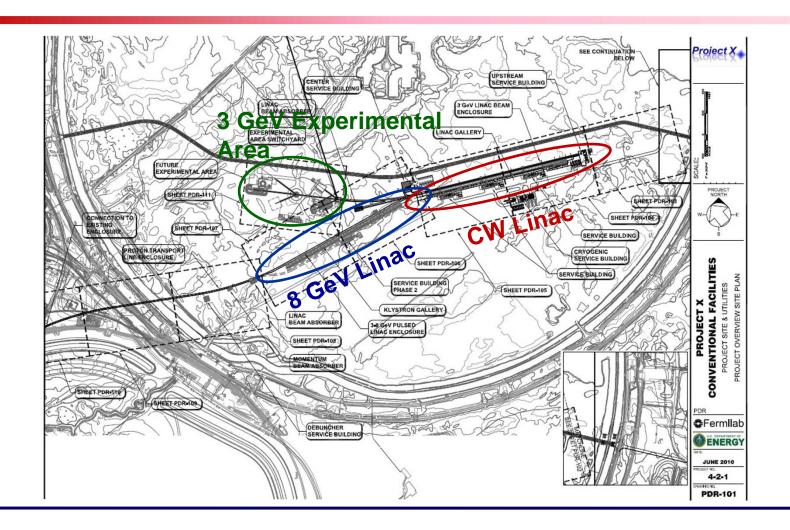
- Standard Model Tests with nuclei and energy applications

Reference Design

Reference Design Capabilities

- 3 GeV CW superconducting H- linac with 1 mA average beam current.
 - Flexible provision for variable beam structures to multiple users
 - CW at time scales >1 μ sec, 20% DF at <1 μ sec
 - Supports rare processes programs at 3 GeV
 - Provision for 1 GeV extraction for nuclear energy program
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
 - Supports the neutrino program
 - Establishes a path toward a muon based facility
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.
- ⇒ Utilization of a CW linac creates a facility that is unique in the world, with performance that cannot be matched in a synchrotron-based facility.

Performance Goals



Linac	
Particle Type	H-
Beam Kinetic Energy	3.0 GeV
Average Beam Current	1 mA
Linac pulse rate	CW
Beam Power	3000 kW
Beam Power to 3 GeV program	2870 kW
Pulsed Linac	\sim
Particle Type	H- \
Beam Kinetic Energy	8.0 GeV \
Pulse rate	10 Hz
Pulse Width	4.3 msec
Cycles to MI	⁶ simultaneous
Particles per cycle to MI	2.6×10 ¹³
Beam Power to 8 GeV	340 kW
Main Injector/Recycler	
Beam Kinetic Energy (maximum)	120 GeV /
Cycle time	1.4 sec
Particles per cycle	1.6×10^{14}
Beam Power at 120 GeV	2200 kW

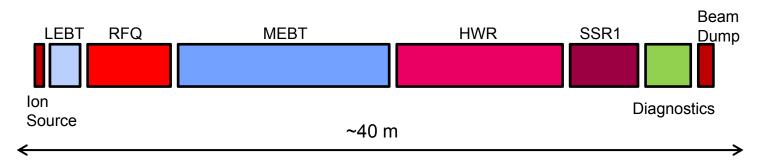
SRF Linac Technology Map

β =0.11	β=0.22	β =0.4	β =0.61	β =0.9	β =1.0
		- cw _	۸		$\rightarrow \leftarrow Pulsed \rightarrow$
162.5 MHz 2.1-10 MeV	325 N 10-160			MHz 3 GeV	1.3 GHz 3-8 GeV
Section	Freq	Energy (Me∖	/) Cav/mag	/CM	Туре
HWR (β _G =0.1)	162.5	2.1-10	9/6/1	ł	HWR, solenoid
SSR1 (β _G =0.22)	325	10-42	16/18/	2	SSR, solenoid
SSR2 (β _G =0.47)	325	42-160	36/20/	4	SSR, solenoid
LB 650 (β _G =0.6	650 650	160-460	42 /14/	/7 5-ce	ll elliptical, doublet
HB 650 (β _G =0.9	9) 650	460-3000	152/19/	19 5-ce	ll elliptical, doublet
<u>ILC 1.3 (β_G=1.0</u>) 1300	3000-8000	224 /28	<u>/28 9-c</u>	ell elliptical, quad

UK-US Workshop - S. Holmes

R&D Program

- Goal is to mitigate risk: technical, cost, and schedule
- Primary elements of the R&D program:
 - Development of front end including wide-band chopper
 - Development of an H- injection system
 - Superconducting rf development
 - Cavities, cryomodules, rf sources CW to long-pulse
 - Development of partners and vendors
 - High Power targetry
 - Integrated facility design
 - Physics performance requirements
 - reliability analysis
 - Upgrade paths: MC and Muons@PX Task Forces
 - Test Facilities
- Goal is to complete R&D phase by 2016


Test Facilities

- New Muon Lab (NML) facility under construction for ILC RF unit test
 - Three CM's driven from a single rf source
 - 9 mA x 1 msec beam pulse
 - Large extension and supporting infrastructure under construction
 - Refrigerator to support full duty factor operations
 - Horizontal test stands for all frequencies
 - Building extension for additional CM's and beam diagnostic area
- The Meson Detector Building (MDB) Test Facility ultimately comprises:
 - 2.5 3 MeV beam (p, H-): 1% duty factor, 3 msec pulse
 - Chopper tests
 - H⁻ beam instrumentation development
 - Shielded enclosures and RF power systems for testing individual, dressed 1.3 GHz, 650 MHz, and 325 MHz superconducting RF cavities

Project X Injector Experiment (PXIE)

- Proposing integrated systems testing of components within the first ~15-30 MeV of Project X.
 - Validate concept for the Project X front end, thereby mitigating the primary technical risk within the Reference Design
 - Operate components, both individually and collectively, at full design parameters
- Integrated systems test goals:
 - 1 mA average current with 80% chopping of beam delivered from RFQ
 - Efficient acceleration with minimal emittance dilution through ~15-30 MeV

\Rightarrow Goal: Beam in fall 2016

Project X

Possible Timeline

- We are currently being well supported for R&D on Project X and associated srf development
- We believe Project X could be constructed over
 - 5 year period if paced by technical requirements;
 - More like 6-8 year period if paced by budgetary realities
- We are working toward completing the R&D phase by 2016

•	Planning	Timeline	(not agreed	to by	DOE)
---	----------	----------	-------------	-------	------

CD-0, Approve Mission Need	FY 2012
CD-1, Approve Alternative Selection and Cost Range	FY 2013
CD-2, Approve Performance Baseline	FY 2014
CD-3, Approve Start of Construction	FY 2016
CD-4, Approve Project Completion	FY 2021

Collaboration

- Multi-institutional collaboration to execute the RD&D Program.
 - Organized as a "national project with international participation"
 - Fermilab as lead laboratory
 - International participation established via bi-lateral MOUs.
- Collaboration MOUs for the RD&D phase outline basic goals, and the means of organizing and executing the work. Signatories:

•		
ANL	ORNL/SNS	BARC/Mumbai
BNL	PNNL	IUAC/Delhi
Cornell	SLAC	RRCAT/Indore
Fermilab	TJNAF	VECC/Kolkata
LBNL	ILC/ART	
MSU		

- Draft Collaboration Governance Plan discussed at Collaboration Council April meeting
- Contacts with: ESS (MOU), CERN/SPL, China/ADS, UK, Korea

Summary

- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
 - World leading programs in neutrinos and rare processes
 - Aligned with ILC and Muon Accelerators technology development;
 - Potential applications beyond elementary particle physics
- The design concept has evolved over the last year, providing significantly enhanced physics capabilities
 - 2 MW to the neutrino program over 60-120 GeV
 - 3 MW to the rare processes program
 - Flexible provision for variable beam formats to multiple users
- CW linac is unique for this application, and offers capabilities that would be hard/impossible to duplicate in a synchrotron
- R&D program underway with very significant investment in srf infrastructure and development
- Project X could be constructed over the period ~2016 2020
 - Will be constructed as a national project with international participation