

The Very-Low Energy Neutrino Factory (VLENF)

v physics with a µ storage ring

The International Design Study for a Neutrino Factory (IDS-NF)

Figure of Merit: \approx 0.15 μ /pot @ end of cooling channel

- The baseline NF in the IDS-NF Interim Design Report (IDR) is the high-energy (E_μ=25 GeV) machine, two-baseline facility:
 - Proton Driver
 - · 4 MW, 2 ns bunch
 - Target, Capture, Drift (π→μ) & Phase Rotation
 - · Hg Jet
 - · 200 MHz train
 - Cooling
 - · 30 π mm (\perp)
 - · 150 πmm (L)
 - Acceleration
 - \cdot 103 MeV \rightarrow 25 GeV
 - Decay rings
 - · 7500 km L
 - 4000 km L

Neil Bliss this afternoon

NF: A Staged Approach

- Although the facility described in the IDS-NF RDR gives unprecedented reach in the vSN mixing parameter space (& for non-standard v physics also) - Can we do good science with something simpler that?:
 - Eliminates the technical risks
 - Does not require a proton driver to start (modest power on target)
 - Utilize existing proton power
 - Yields << Lower Cost Facility

Alan Bross

YES

- A near-term Very-Low-Energy (VLENF) which
 - Addresses the large $\delta m^2 v$ oscillation regime
 - Does precision v cross-section measurements
 - Provides a μ decay ring R&D (instrumentation) & technology demonstration platform

INTEMP

Experimental Motivation

We have a collection of hints of something...

- \bullet LSND: $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$
- MiniBooNE: $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$
- → MiniBooNE: V_μ → V_e
 - Low E_v excess
- Reactor flux anomaly
- ullet MINOS: v_{μ} vs. \overline{V}_{μ}

Alan Bross

Cross-section measurements

- μ storage ring presents only way to measure ν_{μ} & ν_{e} & $(\nu \text{ and } \overline{\nu})$ x-sections in same experiment
 - Supports future long-baseline experiments

Possibilities with a μ storage ring

- Oscillation Physics @ L/E = 1
 - Appearance experiment with low background
 - A different approach to explore the LSND/MiniBooNE result
- v disappearance experiment with 1% precision (10⁴ events)
 - ullet An experiment that uses a v_e beam from a muon storage ring can go a long way in ruling out sterile vs
 - \bullet v_{μ} disappearance (@ short baseline) also
- In addition, the beam opens up opportunities for
 - Detailed study of v interactions
 - Known v beam flux and flavor composition
 - · Only way to get large sample of v_e interactions

30 Years in the Making

 First proposed in detail by David Neuffer in 1980 at the Telemark WS on neutrino mass

DESIGN CONSIDERATIONS FOR A MUON STORAGE RING

David Neuffer
Fermi National Accelerator Laboratory*, Batavia, ILL 60510

ABSTRACT

It was noted earlier that a muon (μ) storage ring can provide neutrino (ν) beams of precisely knowable flux and therefore suitable for ν oscillation experiments. In that paper it was suggested that parasitic use of the Fermilab \bar{p} precooler could provide a useful μ storage ring. In this paper design possibilities for μ storage rings are explored. It is found that a low energy (-1 GeV) ring matched to a high intensity proton source (8 GeV Booster) is most practical and can provide ν beams suitable for accurate tests of ν oscillations.

vs from μ decay

Running with μ⁻

$$\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e$$

· Well defined flavor composition & energy

Accelerator Science

- A technology proving ground and a test bed for μ storage ring instrumentation (Goal of flux normalization to 1% or better)
 - · BCT
 - Momentum spectrometer in arc(s)
 - · Polarimeter

- Beam divergence monitor
- Demonstration of new lattice design (Racetrack FFAG - see following)

The Facility

Tom Roberts
Muons Inc.

Initial concept G4Beamline Simulation

- 8 GeV protons on 2 λ_{I} Be target
- 3 GeV Racetrack ring (M. Popovic)
 - For now, injection is perfect
 - · Not defined
- Tuned for μ^- with KE = 3.000 GeV
 - 3 GeV chosen primarily for xsection meas.
 - $\delta p/p \approx 2\%$
- Detectors (scintillator)
 - Near: 20 m
 - Far: 800T@600 1000 m

Estimated event rates

• v_{μ} Events per 10²¹ POT (turns 10 & up)

Near: 1.3 X 10⁵ (200T)

Far: 0.7 X 10⁴ (800T)

Note: Figure of Merit: $\approx 10^{-4} \, \mu/pot$

J.B. Lagrange Yoshi Mori Kyoto

FFAG Racetrack

 $\delta p/p \approx 20\%$

acc-kurri - 1119-01-2011

2 GeV/c

Injection Concept

- π 's are in injection orbit
 - separated by chicane
- \bullet μ 's are in ring circulating orbit
 - ◆ lower energy ~2GeV/c
- ~30cm separation between

The Physics Reach

Experimental Layout

Must reject the "wrong" sign μ with great efficiency

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$

L/E ≈ 1 Oscillation reach Exclusion contours

http://arxiv.org/abs/1111.6550v1

Cross-section Measurements

- The next generation of LB experiments face some significant challenges
 - ullet CP asymmetry decreases with increasing $\sin^2 2\theta_{13}$
 - Flux and cross-sections must be known to much better than 5%
 - → Hadro production experiments (such as NA61@CERN)
 + near detectors will only expect to reach a precision of <≈ 5%
- Gaining a better understanding of x-sections Will Be crucial to these future experiments
 - The energy range of interest is roughly 1-3 GeV
- μ storage rings provide the only way to get large sample of ν_e and ν_μ interactions (neutrino and anti-neutrino) in a single experiment and:
 - With μ decay ring instrumentation we anticipate getting the flux uncertainty below 1% and
 - With a well designed suite of near detectors x-section uncertainties to the few % level or less.
 - Great deal of ND work for LBNE & IDS-NF
 - Nuclear effects are important (Short-range correlations, Final-state interactions).
 - Important implications for near detector(s)
 - Reach an overall systematic uncertainly that is very difficult for SB

Cross-section measurements II

$$\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}$$

- Important to note that if θ_{13} is large, the asymmetry you're trying to measure is small, so:
 - Need to know underlying v/vbar flux & σ more precisely
 - Bkg content & uncertainties start to become more important

Better data on v_e and $\overline{v_e}$ important for CP, δ_{CP} measurements

The Detector (FAR)

Magnetized Iron Neutrino Detector (MIND) Re-Optimize for lower energy?

- MIND was optimized for the "Golden" channel at the NF (25 GeV μ storage ring)
- Optimization for FD for L/E ≈ 1
 - Essentially Minos ND with upgrades
 - Reduce plate thickness
 - 100-300kA-turn excitation (SCTL)
 - · XY readout between planes

Super B Iron Neutrino Detector SuperBIND

- Reduce Plate thickness to 1cm
- Increase excitation to 270kA-turn
- XY scintillator strip readout between each plate as in MIND

SuperBIND

For p_{μ} > 250 MeV/c there is "no" confusion with respect to bending up or down

But the devil is in the details
This is uniform 1.8T dipole field
Not realistic
Work in progress

Outlook

The VLENF presents an approachable (\$\$) first step towards a NF and/or Muon Collider. The physics and accelerator technology cases are compelling.

More work needs to be done, however, but provides the framework for US-UK cooperative *Scientific Innovation*

- Facility
 - Targeting, capture/transport & Injection
 - Need detailed design and simulation
 - Decay Ring optimization
 - Continued study of conventional and FFAG decay rings
 - Decay Ring Instrumentation
 - Define and simulate performance of BCT, polarimeter, Bspectrometer, etc.
 - Produce full G4Beamline simulation of all of the above to define v flux
 - · And the precision to which it can be known
- Detector simulation
 - For oscillation studies much more detailed MC study of backgrounds & systematics
 - For cross-section measurements need detector baseline design
 - · Learn much from detector work for NF & LBNE
 - Near Detector hall could be envisioned as v detector test facility

VLENF: Conclusions

The Physics case:

- Initial simulation work indicates that a L/E \approx 1 oscillation experiment using a muon storage ring can "easily" reach a $5\sigma+$ benchmark, it is just the "Golden Channel" after all
- v_e and v_μ disappearance experiments delivering at the 1% level look to be doable
 - Systematics need careful analysis
- Cross section measurements with near detector(s) offer a unique opportunity

The Facility:

- Presents manageable extrapolations from existing technology
 - But can explore new ideas regarding beam optics and instrumentation
- Offers opportunities for extensions
 - Add RF for bunching/acceleration/phase space manipulation
 - Provide μ source for 6D cooling experiment with intense pulsed beam

"The start of a long journey?"

Thank You

