

Next Generation μ -to-e and g-2 at FNAL

Valeri Lebedev

Contents

- Introduction
- Basics of muon production
- Muon production in cylindrical target
- Muon phase space manipulation
- Conclusions

Proton Accelerators for Science and Innovation Workshop January 12- 14, 2012

Project X RDR

- Multiple experiments to be carried out simultaneously at 3 GeV
 - ♦ RF separation
 - ♦ up to ~1 MW per experiment
- ~350 KW delivered to Recycler for fast extraction
 - → ~150 kW for 120 GeV 2 MW neutrino program

~200 kW available for 8 GeV experiments with fast extraction
 Staging and final parameters cannot be finalized before CD1
 H-Source → 3 GeV, 1.0 mA CW Linac

0.75

Nuclear

0.75

Muon experiments with "continuous" beam

- Beam power up to ~1 MW beam
 - \bullet Factor 40-120 larger than the power expected in the μ -to-e
 - Variable time structure of the beam
 - Almost arbitrary within few μs period
- How to use this power?
 - How should the target look like?
- What kind of experiments can be done?
- Which additional possibilities for experiments can the large power result in?
 - Achievable muon flux
 - What else can be done to improve experiments with stopped muons?
 - Can ionization cooling of muons help?

Two Major Types of Muon Sources

- Solenoid transport based
 - Has large acceptances both transverse and longitudinal
 - Limited manipulations with beam phase space
 - Expensive
 - Based on large diameter SC solenoids **Production Solenoid Detector Solenoid Transport Solenoid Production Target**
 - Isochronicity can be achieved in limited range of $\Delta p/p$ with helical channel

Tracker

- General baseline based (large length to achieve good extinction of π^{-})
 - Still requires decay solenoid to achieve high muon yield
 - Detector solenoid is required by experiment
 - All types of beam phase space manipulation are possible
 - Isochronous beam transport short muon pulses
 - Inexpensive large length results in good pion extinction
 - Based on dipoles with edge focusing (FFAG is a possible choice)
 - Limited phase space reduces the muon flux

Calorimeter

Surface Muon Beam

- No decay solenoid
- ~4 orders of magnitude smaller muon yield (~1.6·10⁻⁸ /p_GeV for KEK)
- ~30 MeV/c central momentum
- Beam polarization close to 100%

100 ns/div

Prompt and muon signal observed at oscilloscope

Surface Muon

 μ^+ from π^+ decay at the production target.

Low Energy 4MeV (30MeV/c)

100% spin polarization

Suitable for mSR spectroscopy.

High Intensity Surface Muon Beam

Upgrading of primary proton acceralator

KEK: $2.5 \times 10^5 \mu^+/\text{sec}$ (500MeV, 5 μ A)

RAL:~ $10^6 \mu^+/sec$ (800MeV, 200 μ A)

J-PARC: $3x10^7 \mu^+/\text{sec}$ (3GeV, 333 μ A)

Upgrading of acceptance of muon channel

Solid angle acceptance of conventional muon channel ~50msr

Less than 1% of produced surface muon is transported.

Particle Production Simulations

- There are no solid theoretical base for models of multiple particle production in hadron-nucleon interaction.
- There are a lot of experimental data on charged pion production
- MARS particle production model was tuned to recent measurements of HARP collaboration
 - ♦ p = 2, 3, 8 GeV/c
- Two HARP groups have published different results based on same measurements
 - Difference for π^{-} is not significant

Pion Production in a Pencil-like Target

Long. distribution for π + & π -

Long. distribution for π + & π -

Pion longitudinal distribution function $(df/dp_{||})/E_{p_kin}$ [c/GeV²]

Target - nickel cylinder, L=10 cm, r=0.4 cm; no magnetic field

Total production per unit energy of incoming protons

Ekin=2 GeV: forward 5.3% p_GeV^{-1} ; backward - 2.9% p_GeV^{-1}

Ekin=3 GeV: forward 6.3% p_GeV⁻¹; backward - 2.8% p_GeV⁻¹

- Longitudinal pion distribution is close to the Gaussian one, $\sigma_p \approx 100$ MeV/c
- Central part of distribution has weak dependence on the incoming proton energy in the range [2-8] GeV
 - High energy tail grows with proton energy

Pion Production in a Pencil-like Target (continue)

Pion distribution over momentum, d^3N/dp^3 , Nickel cylinder, L = 10 cm, r = 0.4 cm; no magnetic field

 Distribution function approaches zero due to particle deceleration at the target surface

Pion Deceleration due to Ionization Loss

For $\gamma\beta \in [0.1, 1]$ one can write $\frac{dE}{dx} \approx \frac{1}{\beta^2} \left(\frac{dE}{dx}\right)$

For non-relativistic case $E = m_{\pi}c^2\beta^2/2$ \Rightarrow $p_{fin}^4 \approx p_{in}^4 - 4m_{\pi}^3c^2\left(\frac{dE}{dx}\right)L$

 $f(p_{fin}) = \frac{f(p_{in})}{dp_{fin} / dp_{fin}}$ Distribution function change is:

Combining one obtains:

$$f'(p_{fin}) \propto p_{fin}^{3} / (p_{fin}^{4} + p_{r}^{4})^{3/4}$$

where:
$$p_r \approx \sqrt[4]{4m_{\pi}^3 c^2 L (dE/dx)_0/c}$$

 $\mathbf{m}_{\pi} \approx \mathbf{m}_{\mu} \Rightarrow$ fluxes of pions and surface muons are not significantly different for p ≤ 30 MeV/c !!!

Muon distribution over momentum

- After decay a muon inherits the original pion momentum with Δp correction depending on the angle of outgoing neutrino, Δp_{cm} =29.8 MeV/c
- For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p
 - \Rightarrow Momentum spread in μ -beam is smaller than in π -beam

Phase Density and Emittance of Muon Beam

Pions

For short target, $L_{targ} < F$, (antiproton source)

$$\beta_{opt}^* \approx \frac{L_{targ}}{6} \approx \frac{E_{targ}}{6} \sigma_{\theta}^2$$

- lacktriangle For small energy pions this approximation does not work, i.e $L_{ ext{rarg}} \geq eta$
 - ♦ In this case

•
$$\varepsilon \approx \beta \sigma_{\theta}^2$$
 where $\beta = \frac{2pc}{eB}$

- and the beam emittance does not depend on the target length
- ⇒ Phase density of pions grows with the magnetic field

Muons

- To reduce emittance growth due to pion decays the pions are transported in a solenoidal magnetic field
- Pions are produced in the solenoid center
 - ⇒ they have small angular momentum
- Pion decays have little effect on the angular momentum and the beam emittance
 - ⇒ Phase density of the muons is proportional to pion density and, consequently,
 - ⇒ the number of muons in a given phase space grows with target magnetic field
 - ⇒ and muons do not have x-y correlations after exiting the solenoid

Target and Target Cooling

- Optimal target length should be ~1.5 of nuclear interaction length ⇒ i.e.: carbon ~60 cm; tantalum ~15 cm
- The beam leaves ~10% of its energy in the target;
- For 1 MW beam power the power left in the target is ~ 100 kW
- Large beam power prohibits usage of pencil-like target
 - Heat cannot be removed from pencil target: dP/dS ≥ 2 kW/cm² for R~0.5cm
 - Mercury stream is another possibility but it has significant problems with safety. Therefore it was not considered.
- Cylindrical rotating target looks as the most promising choice
 - ◆ Carbon (graphite) and tantalum targets were considered
 - Tantalum or any other high Z target has a problem with heating

Target cooling

- Rotating cylinder is cooled by the black body radiation
 - ◆ PSI uses a rotating graphite target at 1 MW beam power
 - ◆ Tantalum, R=10 cm, d=0.5 cm, L=15 cm, 400 rev/min
 - $T \approx 3000$ K (melting T = 3270 K), $\Delta T \approx 50$ C
 - ◆ Graphite (C), R=10 cm, d=0.5 cm, L=40 cm, 60 rev/min
 - $T \approx 1800 \text{ K (melting T = 3270 K), } \Delta T \approx 50 \text{ C}$
 - For graphite temperature looks OK but we still have to address
 - ⇒ Bearing lifetime under radiation (rotation)
- Relative to the pulsed beam the CW beam drastically reduces stress in target

Effects of radiation

Shielding estimate

C[t] / W[t] /Rmax [cm]

This preliminary absorber design satisfies typical requirements for SC coils

- peak DPA 10⁻⁵ year⁻¹)
- power density (3 μW/g)
- absorbed dose 60 kGy/yr
- Dynamic heat load is 10 W

Transition from 25 kW of μ -to-e to 1 MW increases the shield radius from ~80 cm 110 cm => B = $5 \text{ T} \rightarrow 3 \text{ T}$ for the same stored energy

Muon Yield from Cylindrical Target

 R_{out} =20 cm, ΔR =5 mm, L=16 cm, θ =300 mrad Total muon yield at ±10 m Forward - 1.4% per proton GeV

Backward - 0.73% per proton GeV

Yield per 1 GeV of proton energy: pc=3 GeV/ ($E_{kin}=2.2$ GeV), $\sigma_x = \sigma_y = 1$ mm - parallel beam, proton multiple scattering unaccounted

- Small difference between forward and backward muons for Pc<50 MeV</p>
- For pc<120 MeV a weak dependence on E_{kin_prot} for $E_{kin_prot} \in [2, 8]$ GeV/c

Muon Yield from Cylindrical Target (continue)

- For pc < 120 MeV the carbon target has smaller yield but</p>
 - Less problems with cooling due to larger length
 - It also makes less neutrons
- Compared to a pencil like target a hollow cylinder target has smaller muon yield
 - But it allows one to use much larger beam power
- Beam damp inside solenoid would be a formidable problem

therefore below we assume:

- Backward muons
- ♦ Carbon target

Muon Yield into a Beamline with Finite Acceptance

- In some applications beam transport in a beam line can be desirable
- It allows
 - Isochronous transport preventing bunch lengthening
 - ♦ but it significantly reduces the acceptance and momentum spread
- Below we assume that the beam line limits maximum acceptance and momentum spread to $\epsilon \approx 0.3-3$ cm, $\Delta p/p \approx \pm 0.15$
 - lacktriangle Beam line can be matched to decay solenoid to maximize the capture $\Rightarrow eta_{\sf opt}$

Graphite cylind. target, backward muons, p_{prot} =2 GeV/c, ε_x = ε_y =1 cm, $\Delta p/p$ =±0.15, θ =200 mrad, B=2.5T

- For small emittance the dependence of muon yield on the β -function is weak
- Strong suppression of small energy muons (pc<50 MeV) by deceleration in medium</p>

Muon Yield into a Beamline with Finite Acceptance (continue)

- Absence of x-y correlations after beam exit from magnetic field requires axial symmetric exit from solenoid
 ⇒ i.e. the beam center has to coincide with solenoid axis
- Yield is proportional to B_{target}
 - ♦ $2.5 T \rightarrow 5 T$ would double the yield
- Yield is $\propto \Delta p/p$ (for $\Delta p/p \ll 1$)
- Yield is $\propto \epsilon^{1.5}$

Yield, C cylinder, backward µ

Capturing the beam in a beam
 line reduces the muon flux by about 20 - 50 times

Dependence of muon yield on the target angle relative to magnetic field for carbon target into the following phase space: $\varepsilon_x = \varepsilon_y = 1$ cm, $\Delta p/p = \pm 15\%$, $p_{prot} = 3$ GeV/c, $(E_{kin} = 2.21$ GeV) Optimal momenta are: 100 MeV/c for backward and 200 MeV/c for forward muons
Triangles show results for tantalum target

Multiple scattering of protons in the target

- Multiple scattering limits the thickness of cylindrical target to a few millimeters
- Optimal target thickness is weakly affected by its material
 - Heavy target has larger scattering but is shorter
 - It has approximately the same overall effect on the beam envelope growth due to multiple scattering
- Small proton beam emittance in Project X allows some reduction of multiple scattering effects
 - the beam is focused to the small spot at the target end

Beam transport in Helical Transport Line

- If isochronicity of beam transport is required then the beam transport in a "standard" line is the only choice
- The line may consist of downward spiral
 - It is matched to the production and detector solenoids with two dipoles and one or two solenoids at each end
- Toy example
 - ◆ One revolution includes 4 dipole magnets: B=5 kG (Pc=50 MeV), L=52.3 cm,
 R=33.3 cm, gap 13 cm, good field region width: ±15 cm
 - ♦ The line acceptance 0.41 cm; Momentum spread ±0.15, it descends with angle of 2.591 deg, step of the helix is 23.973 cm
 Fri Jul 29 23:06:19 2011 OptiM MAIN: C:\VAL\Optics\Project X\Mu2e\microtron.opt

Betatron beam envelopes for helix and match to the detector solenoid. Acceptance 0.41 cm

Beam transport limitations

- To achieve the yield of ~10⁻⁴ we need to have a line with acceptance of ~3 cm (backward muons from carbon target)
 - ♦ Similarity of optics yields: $ε ∝ α ∝ β_{x,y} ∝ R_o$
 - Isochronicity requires soft focusing, $Q_x \sim 1$
 - ◆ Magnetic fields are reduced with increase of R₀ making magnet price affordable
 - ◆ Total length and number of turns is determined by required pion extinction (~70 m for 50 MeV/c and extinction of 10⁻¹⁴)

Possibilities with Deceleration and Degrading

- Deceleration in electro-magnetic structure results in the adiabatic antidumping, with consequential 6D emittance growth \propto p⁻³, i.e. 8 times for every factor of 2 in momentum
- Deceleration in the material looks much better at large p (p \geq m_{μ}) but behaves the same way (\propto p⁻³) for non-relativistic particles
 - \bullet even worse than it if multiple scattering is important (large $\beta_{x,y}$ at absorber)
 - Redistribution of damping decrements in realistic simulation partially helps but does not address the problem

Deceleration (Degrading) after Ionization Cooling

- Ionization cooling looks rather hypothetical possibility because:
 - ◆ In difference to the muon collider the CW operation is required
 - It makes the cooling much more difficult and presently hardly feasible
 - Cost prohibitive
- Even if the cooling problem is solved at pc = 100 200 MeV the deceleration to low energy is quite ineffective

Degrading of the rectangular distribution with ±3% momentum spread

The ionization cooling graded with energy looks even more exotic

g-2 present and future

Muon yield for g-2 (present)

- Tight beam focusing on target (σ ~150 μ m, β *~7 cm)
- Small beta-function on the target for outgoing pions $\beta^* = 2 2.5$ cm
 - ◆ Lithium lens operating at ~15 Hz

Dependence of pion yield on beta function for current pbar target ($\Delta p/p=0.02$)

- Weak dependence of pion yield on target material
 - Inconel (present pbar target) looks as a good choice
- Using thin disc target yields ~30% improvement relative to the presently used "solid piece" target (Be spacers between disks)

Dependence of pion yield on beta function for different material ($\Delta p/p=0.02$).

Experiments with fast extracted beam at Project-X era (first glance on g-2, no real work done)

- Available power up to 200 kW
- Beam in Recycler can be pre-bunched to g-2 structure (~ 50 ns)
 - ~100 kW at @ ~ 200 500 Hz (kicker?)
- Using antiproton source rings is required to get power above ~100 kW
- Pion yield reduction with repetition rate increase (> 15 Hz)
 - Loss of lithium lens gradient
 - Using normal quads does do the same strong focusing
- Extra beam power should help but its optimal use need to be found!!!

Conclusions

- 1 MW target in a few Tesla solenoidal field is feasible
 - Graphite rotating cylinder cooled by the black-body radiation
 - ♦ Radiation shielding: $R \approx 80$ cm (for μ -to-e) $\rightarrow R \approx 110$ cm
 - ⇒ Smaller B if the same energy is stored in the field;
 - Magnetic field change: $B \propto R^{-3/2} \approx (80/110)^{3/2} \approx 0.6$
 - o overall loss of muon yield is smaller than factor of 2
 - o ~ 20 times more muons than present Mu2e (1 MW, 2 3 GeV)
- Muon yield per unit power weakly depends on proton energy[2-8 GeV]
 - ♦ for 1 GeV beam
 - ~15% reduction if the energy is reduced from 2.2 to 1 GeV for Ta target
 - ~2.5 times reduction for graphite target!!!
- Beam line option
 - Creates wide possibilities for the phase space manipulations
 - Isochronicity of beam transport
 - Muon flux reduction by more than an order of magnitude
 - Decelerating or degrading of muons does not look promising
 - Ionization cooling of muon is presently hardly feasible
 - Requirement to have only low energy muons for stopping in a thin target (pc<<100 MeV) results in drastic reduction of muon flux

Backup Slides

Muon Physics

- Possible experiments
 - Next generation $(g-2)_{\mu}$ if motivated by next round (theory, LHC)
 - Next generation μ-to-e
 - new techniques for higher sensitivity and/or other nuclei.
 - → μ edm
 - μ→3e

 - Systematic study of radiative muon capture on nuclei.

Major types of experiments

- High energy, small repetition rate (~10-100 Hz, fast extraction from ring)
 - ♦ (g-2)_µ
- Small energy, high repetition rate (~1-10 MHz)
 - decays on a fly
 - ♦ Stopped muons: μ-to-e,
 - Ultimate requirements to a muon source:
 - o Small energy, pc < 10-20 MeV (Ekin < 0.5 4 MeV) is desirable
 - o Large flux ~10¹³ s⁻¹

Present u-to-e

- Conversion $2.1 \cdot 10^{-3}$ (dN_p/dt=2.4·10¹³ s⁻¹, P=25 kW, dN_µ/dt=5·10¹⁰ s⁻¹)
- Extinction $<10^{-10}$ (sensitivity $6\cdot10^{-17}$ (90% C.L.))
- Target (gold, L~16 cm, r=0.5 cm, water cooled)
 - ◆ Total power 25 kW
 - Power left in the target 2 kW
- Secondary target
 - \bullet 17 Al discs, 0.2 mm thick, 5 cm apart, tapered radii r_d = 8.3 \rightarrow 6.53 cm
- Magnetic fields
 - Production solenoid: 5T -> 2.5 T, internal radius 0.75 m (reflection of muons)
 - Transport solenoid 2 T
 - \bullet Detector solenoid: 2T -> 1T (reflection of electrons with negative $p_{||}$)

Major Requirements to a New Generation μ -to-e Experiment

- \sim 100 times better than μ -to-e
 - single event sensitivity $2 \cdot 10^{-19}$ (or $6 \cdot 10^{-19}$ at 90% CL)
 - \Rightarrow 5·10¹⁸ muons: 2 years of 2·10⁷ s each
 - \Rightarrow 5·10¹² muons/s
 - ◆ Pc < 20 MeV i.e. E_{kin}<1.9 MeV (stopped in 0.4 mm Al foil)</p>
 - ♦ Extinction <10⁻¹⁴ for pions; no antiprotons
 - ♦ Short pulse: t < 10 ns
 - Detector is located underground (≥12 m)
- Short pulse and very good extinction imply that the beam transport has to be in an isochronous beam line
 - Drastic reduction of transverse and longitudinal acceptances
 - ⇒ 1 MW Project X power should be helpful
- Limitation of maximum energy to <1 MeV points out to the muon deceleration as a possible choice

[†] Bernstein & Prebys, July 26, 2011

Muon distribution over momentum

- After decay a muon inherits the original pion momentum with Δp correction depending on the angle of outgoing neutrino, Δp_{cm} =29.8 MeV/c
- For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p
 - \Rightarrow Momentum spread in μ -beam is smaller than in π -beam

Making slow muons

Dependence on target thickness;

10 m decay channel, 2.5 Tesla, E=3 cm, 300 mrad angle, backward direction.

- Current model does not take into account scattering of primary proton beam in target.
 - It will reduce dependence on the target radius

Muon Yield into limited acceptance and momentum spread

backward muons, B=2.5 T, $p_{opt} = 100 - 120 MeV/c$

 ε = 3 mm mrad, $\Delta p/p$ = ±15%,

	Graphite		Tantalum	
Eproton_kin	Total yield	Yield per GeV	Total yield	Yield per GeV
[GeV]		of Ekin_proton		of Ekin_proton
1	1.8·10 ⁻⁵	1.8·10 ⁻⁵	4.4·10 ⁻⁵	4.4·10 ⁻⁵
pc=2	>	?	3	3
2.205	9.5·10 ⁻⁵	4.3·10 ⁻⁵	11.7·10 ⁻⁵	5.3·10 ⁻⁵
pc=7	?	?	?	?

- Large yield reduction for carbon target at 1 GeV Muon Yield into the μ -to-e solenoidal transport
- μ-to-e acceptance simulation

- Acceptance is defined to be the number of negative muons, as a fraction of the number of negative pions produced in the target, that reach the end of transport solenoid channel
- Convolution of acceptance with muon production yields

Graphite

E _{proton_kin}	Total yield	Yield per GeV
[GeV]		of Ekin_proton
1	3	?
pc=2	3	?
2.205	2.73·10 ⁻³	1.24·10 ⁻³
7.117	7.93·10 ⁻³	1.11·10 ⁻³

Tantalum

Eproton_kin	Total yield	Yield per GeV
E _{proton_kin} [GeV]		of Ekin_proton
1	3	?
pc=2	?	,
2.205	?	,
7.117	?	?

4D beta-functions (top) and dispersions (bottom) for helix and match to the detector solenoid

Dependence of pion yield on beta function for different target length ($\Delta p/p=0.02$).

37

16