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What about Fixed Field
Alternating Gradient (FFAG) accelerator?

cyclotron synchrotron FFAG
orbit

excursion orbit

excursion

Black shape: lattice magnet
Red curve: orbit

From a presentation by Y. Mori 6



Advantages of FFAG

* Fixed field magnets enables quick acceleration.

Beam power can be increased with high repetition, 1 kHz
or more.

ISIS (has maximum rep rate of synchrotron) is still 50 Hz.

* AG focusing pushes momentum to synchrotron
range.

* Fixed field magnets provide flexibility and reliability.
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From application point of view

* Neutrino factory
Acceleration within muon lifetime is possible.
Muon accelerator alternative to RLA
* High power proton driver for ADSR and neutron and
muon source

Almost continuous and high energy (a few to 10 GeV)
proton

* Proton accelerator for medical and security

Compact and inexpensive machine
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Scaling (conventional) FFAG

e Theideais old in 1950s.

e Early work was at MURA.
Frank Cole, Fred Mills, ...

KEK/Kyoto Univ. developed

hardware and made a
proton FFAG in 2000s.

e Basically followed the
original design concept;

Scaling law (constant tune).



Non-scaling FFAG

e Simplified design called non-scaling FFAG
strengthens the advantages.

Acceleration in “storage ring” with extremely small
dispersion function

* From scaling to non-scaling FFAG

Orbit of
A high p A
Bz(r) \L Gradient of
Orbit of high p
:> Constant
Gradient of gradient
\_/ > \/ >
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ns-FFAG works as expected?

 Demonstration of a linear non-scaling Fixed Field
Alternating Gradient accelerator was long waited.

 EMMA is
Electron Model for Many Applications
e Although initial experiment more focuses on

Electron Model of Muon Acceleration
11
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Three main goals

* Acceleration in serpentine 207 =
channel (outside rf bucket) in 2 ™ = S
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* Large acceptance for huge (muon) beam emittance.
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ALICE/EMMA at Daresbury

Accelerators and Lasers in Combined Experiments

~

Parameter Value

Particle electron

Momentum 10.5 to 20.5 MeV/c

Cell 42 doublet
Circumference 16.57 m

RF Frequency 1.301 GHz

RF voltage 2 MV with 19 cavities

13






EMMA collaboration

 Funded by CONFORM (EPSRC basic technology grant).
e STFC provided significant support through ASTeC.

* Institutions include
STFC/ASTeC
Cockcroft Institute
John Adams Institute
Imperial College London
Brunel University
Fermi National Accelerator Laboratory
Brookhaven National Laboratory
CERN
TRIUMF

...... 15
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Complete ring

A beam circulates first for three turns and then for
thousands turns a few day later.
16 August 2010
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easurement of basic parameters
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Two major problems identified

* Closed orbit distortion was rather large (~+/- 5 mm)
in both horizontal and vertical.

* rf vector sum of 19 cavities was lower than expected.
Cavity phase was not correctly adjusted.
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beam

NSNS

For each cavity,
observe sign of loading
signal as a function rf
phase offset.

Cavity phase adjustment
with beam loading signal

 Monitor amplitude
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* Monitor phase

111111

vvvvvvvv

Vector sum ~ 19 (# of cavity) x voltage
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Source of COD

* Misalignment turns out worse than expected.

e Re-alignment during shutdown should have made
COD less than +/- 1 mm. But...
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COD caused by septum

e Kick with the strength of 0.0006 [Tm] at both septa

makes a similar COD observed.

extraction septum injection septum

—o— simulation
20 —1| —=— ext. septum on " > :

closed orbit [mm)]

cell

e Source of vertical COD is not yet identified.
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Conclusion from runs in 2010

e Stability of optics with very small dispersion function
has been illustrated.

 Dependence of orbital period on beam momentum is
confirmed.

Optics is fine.

e Large COD suggests integer tune crossing could be
harder than initially thought.

Acceleration seems difficult.

23
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Quick and dirty?

e Fast acceleration with maximum possible rf voltage

To overcome possible beam deterioration due to integer
tune crossing.

Brute force, but why not.

e Serpentine channel opens with 1 MV per turn.
* Increase the voltage to ~ 2 MV and see what happen.

* NAFF algorism is used to calculate instantaneous
tune.

25
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Rapid acceteration
with large tune

with 1.9 MV rf (1)
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e Beam position and tune with fixed momentum.
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e -
with 1.9 MV rf (2)
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o of orbit (mm)

o of orbit (mm)

with 1.9 MV rf (3)

Not much distortion to betatron oscillations with

Integer tune crossing.
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Momentum measurement

e Beam image on screen in the extraction line.
18 April 2011

12.0+/-0.1 MeV/c beam is accelerated to 18.4+/-1.0 MeV/c. 30



@ Science & Technology
Facilities Council

Conclusion from runs in 2011

* EMMA proves that a linear non-scaling FFAG works.

A big step forward to the muon acceleration in a neutrino
factory as well as to other applications.

 Two out of three main goals are achieved.

Still need to show large acceptance.
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EMMA Commissioning results in 2011
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Where we are now?

* “Proof of principle” phase (~publication of a letter)

June to October 2010: injection, lattice tuning,
measurement of basic parameters, rf setup
January to March 2011: acceleration/deceleration

First journal paper is published in Nature Physics on 10
January 2012.

e Detailed measurement (~publication of full papers)
In the next year: list in the following page
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Plan for the next year
more EMMA run

* Acceleration with varying phase advance
Effect of magnet errors and misalignments
Slowly cross integer tune

Examine effects of space charge, etc.

* Serpentine channel acceleration
Measure mapping of longitudinal phase space
Study parameter dependence of longitudinal phase space
Dependence of transverse amplitude, etc.

* Show large longitudinal and transverse acceptance

Scan injected beam in horizontal, vertical and longitudinal

phase space
34
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Summary

* EMMA proves that a linear non-scaling FFAG works.

* So far, no big surprise.

* We will gain much more knowledge in the next year,

both design and operational view point, on a linear
non-scaling FFAG.
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From application point of view

* Neutrino factory
Acceleration within muon lifetime is possible
Muon accelerator alternative to RLA

* High power proton driver

Almost continuous and high energy (a few to 10 GeV)
proton

Acceleration of space charge dominated beam in FFAG is
not demonstrated in EMMA

* Proton accelerator for medical and security

Compact and inexpensive machine

36
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Demands for new accelerator
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Thank you for your attention.
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