Proton Accelerators for Science and Innovation Workshop

12-14 January 2012 Fermilab

US/Central timezone

High Field Dipole Studies at FNAL

Alexander Zlobin Fermilab

Outline

- *** FNAL Program Mission and Goals**
- **❖** R&D Summary (focus on Nb₃Sn D and Q work)
- ❖ 11 T dipole for LHC collimation system upgrade
- Work status
- Conclusions

FNAL Program Mission and Goals

- Magnet technology a key enabling technology for particle accelerators.
- Main goal at Fermilab is the development of advanced SC accelerator magnets and baseline technologies for present and future particle accelerators.
- ❖ <u>Present focus</u> is on the development of high-field accelerator magnets with operating fields up to 15 T based and Nb₃Sn superconductor.
- ❖ <u>In the longer term</u> the program will support the development of accelerator magnets with operating fields above 20 T based on HTS/LTS hybrid coils.
- ❖ <u>SC materials R&D</u> is a key part of this program.
- ❖ <u>This program supports also</u> the improvements of magnet design and analysis methods and tools, fabrication and test infrastructure, instrumentation, training of young scientists and engineers.

R&D Summary

- ❖ HFM Program started in 1998
- Program major R&D results:
 - 43.5 mm Nb₃Sn dipoles for VLHC with operation fields up to 10-11 T (1998-2007)
 - 90-mm Nb₃Sn quadrupoles for LHC IRs with operation gradients up to 200 T/m (2005-2011)
 - Nb₃Sn magnet technology scale up (2007-2011)
 - Rutherford cables based on Nb₃Sn, Nb₃Al and Bi-2212 strands (since 2000)
 - Solenoidal and helical coils based on YBCO tape (2009-2011)
 - Contributed to VLHC, LARP, MCTF-MAP, CDP, VHMFC, etc. studies

Dipole Magnets for Hadron Colliders

- ❖ Development a series of 43.5-mm Nb₃Sn dipoles with B_{nom}~10 T based on collar-free structure
- First demonstration of the quench performance and field quality reproducibility for Nb₃Sn accelerator magnets
- Development and demonstration of effective passive correction scheme based on iron strips

Quadrupole Magnets for Hadron Colliders

- ❖ Development a series of 90-mm Nb₃Sn quadrupole with G_{max}~217 T/m based on modified MQXB structure
- First demonstration of the traditional collar-based mechanical structure with brittle coils
 - two collaring techniques for Nb₃Sn coils quadrupolestyle and dipole-style collar
- Quench performance and field quality reproducibility for Nb₃Sn quadrupoles

Technology Development

- Development of Coil Test Structure for single short and long dipole and quadrupole coils
 - o lower cost, shorter turnaround time, advanced instrumentation
- Experimental studies:
 - o Nb₃Sn strand (PIT, MJR, RRP) performance at 1.9-4.5 K
 - o cable with SS core to suppress eddy currents
 - o cable insulation based on ceramic, E-glass and S2-glass tapes
 - o coil structural materials (bronze vs Ti poles) and processing
 - o the effect of coil pre-stress on its quench performance

Nb₃Sn Magnet Technology Scale Up

4-m long Nb₃Sn dipole (left) and quadrupole

4-m long coil test structure

Nb₃Sn Strands & Rutherford Cables

RRP-102/127

RRP-108/127

RRP-114/127

- ❖ RRP strand design improvement in collaboration with OST by increasing the number of subelements and subelement spacing in the strand cross-section
 - o Better stability, lower magnetization
 - Lower damage during cabling
- Rod-in-Tube Technology with Hyper Tech Research
 - Smaller Deff, alternative vendor
- ❖ PIT Technology with SMI and SupraMagnetics, Inc.
- ❖ Cables made with and without stainless steel cores had low (<5%) critical current degradation in magnets</p>

Contribution to LARP and Plans

FNAL contributions to US-LARP

- 90-mm technology quadrupoles (TQ series)
- 3.6 m long quadrupoles (LQ series)
- 120-mm quadrupoles (HQ and LHQ series)
- o Materials study
- IR and Magnet Design studies

- ❖ Mid-term goal: Implement Nb₃Sn magnets with magnetic fields up to 13 T into existing machines (HL-LHC)
- Long-term goal: Start exploratory accelerator magnet R&D to achieve magnetic field up to 20 T based on HTS/LTS for energy frontier machines (HE-LHC, MC)

LHC Collimation Upgrade

- **❖ CERN** is planning to upgrade the LHC collimation system
 - o additional collimators in DS regions around points 2, 3, and 7
 - o IR 1 and 5 as part of the HL-LHC
- ❖ The required space ~3.5 m can provide stronger and shorter dipoles
 - These dipoles will be operated at 1.9 K, powered in series with the main dipoles and deliver the same integrated strength at 11.85 kA
 - o MB: B_{nom} =8.35 T, L_{mag} =14.3 m, $\int BdL$ = 119.2 Tm @ I_{nom} = 11.85 kA
 - o L_{mag} =14.3-3.5=10.8 m, B_{nom} =11 T => Nb_3 Sn technology

General Design Approach

- Coil aperture 60 mm
 - accommodate the beam sagitta and avoid the additional complication of curved Nb₃Sn coils
- ❖ Coil length 5.5 m
 - present tooling length limitations at Fermilab
- ❖ Modified 550 mm iron yoke from the LHC main dipole
 - o compatibility with LHC main systems
- 11 m long cold mass combines two 5.5 m long cold masses
 - o arrangement flexibility

Magnet Development Plan

❖ CERN and FNAL have started in October 2010 a joint development program to demonstrate feasibility of twin-aperture 11 T, 5.5 m long Nb₃Sn dipoles by 2014.

❖ R&D Phases

Date	Description	Length	Remarks	Goals	
End-2011	1-in-1 Demonstrator Magnet	2 m	Construction at FNAL	Cable technology Coil Technology Quench performance Magnetization effects	
End-2012	2-in-1 Demonstrator Magnet 1	2 m	FNAL collared coils CM-Assembly at CERN	2-in-1 structure Field quality: - iron saturation	
Mid-2013	2-in-1 Demonstrator Magnet 2	2 m	CERN collared coils CM-Assembly at CERN	- cross-talk - Magnetization effects Quench performance Reproducibility	
End-2014	2-in-1 Prototype Cold Mass	5.5 m	Aperture 1 by FNAL Aperture 2 by CERN CM assembly at CERN	Scale-up Long tooling Fabrication of long coils CM assembly Magnetic performance	

Possible Production Phase 2014-17

CERN & FNAL:

- Cable & coil production
- Coil collaring

CERN:

- Cold mass assembly
- Cryostat integration
- Testing
- Installation in the tunnel

Single-Aperture Demonstrator

- Modified structure of HFDA dipole.
- Two-layer 6-block coil design
- Stainless steel collar
- **❖ 400 mm vertically split iron yoke**
- Al clamps to control yoke gap
- ❖ 12 mm thick stainless steel skin
- **❖ 50-mm thick end plates**
- Maximum stress during assembly ~130 MPa to keep coil under compression up to 12 T bore field
- Mechanical structure optimized to maintain the coil stress below 165 MPa
 safe for brittle Nb₃Sn coils

Twin-Aperture Design Studies

- Modified MB structure with separate collared coils - to simplify the process and reduce the press force during collaring
- Electromagnetic design challenges
 - o matching the MB transfer function
 - o control the magnetic cross-talk between apertures
 - o minimization of the unwanted multipoles in the current cycle
- Mechanical design challenges
 - o first twin-aperture Nb₃Sn dipole
 - o Lorentz force management
 - Poles under compression and coil stress <165 MPa

Demonstrator Dipole Parameters

Parameter	Single-aperture	Twin-aperture	
Aperture [m]	60		
Nominal current I _{nom} [A]	11850		
Yoke outer diameter [mm]	400	550	
Nominal bore field [T]	10.86	11.25	
Short-sample bore field at 1.9 K [T]	13.6	13.9	
Margin B _{nom} /B _{max} at 1.9 K [%]	80	81	
Maximum design field [T]	12.0	12.0	
Inductance at I _{nom} [mH/m]	5.6	11.98	
Stored energy at I _{nom} [kJ/m]	473	969	
F _x per quadrant at I _{nom} [MN/m]	2.89	3.16	
F _y per quadrant at I _{nom} [MN/m]	-1.57	-1.59	
Coil length [m]	1.9	1.9	
Magnetic length [m]	1.79	1.68	

RRP Strands for 11 T Dipole

- Strand design parameters
 - o Diameter 0.7 mm
 - o J_c(12, 4.2 K)>2650 A/mm²
- ❖ Baseline strand RRP-108/127 (OST)
 - o High-J_c, stable at 1.9-4.6 K
 - o Produced in long length
 - Performance demonstrated in several short and long coils
 - o Could be used for production magnets

- ❖ R&D strand RRP-150/169 (OST)
 - promising performance
 - o Production 60 kg in 2011
 - Performance demonstration in magnet summer 2012

Cable Development and Fabrication

- Baseline cable for demonstrator magnets
 - o 40 strands based on RRP-108/127 0.7 mm strand w/o core
 - o Unit length 210 m
- Cable R&D and production
 - o 250 m practice coil
 - 234 m + 167 m practice cable
 - 440 m piece 2 ULs for demonstrator model + ~20 m for samples
 - o 230 m CERN for coil #3
- Cable for production magnets
 - o RRP-150/169 strand with 25 um SS core
 - o 60 m + 120 m + 230 m

Coil Design and Fabrication

- ❖ 60 mm ID, 2-layer
- ❖ PC#1 rectangular Cu cable
 - o two types of end parts
- **❖** PC#2 Nb₃Sn cable (RRP-114/127)
 - o will be used for mechanical model
- **❖** Coil #1 wound, prepared for impregnation
- ❖ Coil #2 wound, prepared for reaction
- Coil #3 winding starts in January (CERN cable)

Coil Technology

Coil winding

Reacted coil

Cured coil

Coil after epoxy impregnation

Conclusions

- Magnet technology a key enabling technology for accelerators
 - High Field Magnet Program is a key R&D effort at Fermilab
 - Good progress and excellent results
- ❖ Present focus on 11 T Nb₃Sn dipole magnets for the LHC upgrades in collaboration with CERN
 - o additional cold collimators
 - o other applications in LHC, VLHC
- ❖ The fabrication of single-aperture demonstrator dipole is in progress model test in April 2012
- The twin-aperture 11 T dipole design have started
- ❖ Nb₃Sn technology is also fundamental for accelerator magnets with fields ~20 T
 - Nb₃Sn coil will generate ~70% of the total field and play an important role in quench protection and cost reduction
- Mb₃Sn technology will provide excellent opportunities for LHC upgrades and Muon Collider