

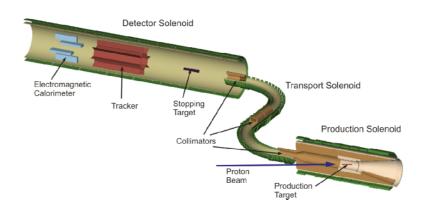
Identification of Potential Synergies in the US-UK R&D Program

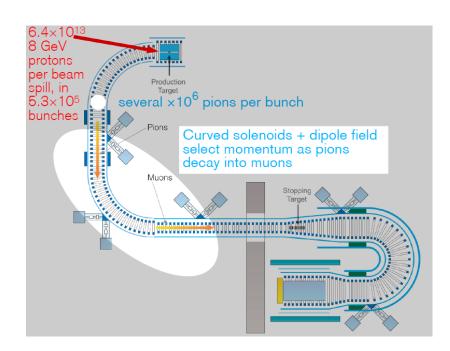
Michael S. Zisman Center for Beam Physics Accelerator & Fusion Research Division Lawrence Berkeley National Laboratory

Proton Accelerators for Science and Innovation Workshop-Fermilab January 14, 2012

- Both US and UK accelerator physicists are presently engaged in efforts to develop intense muon beams for particle physics experiments
 - examples
 - \circ next-generation mu2e and g-2 experiments
 - Neutrino Factory and Muon Collider (NF and MC)
 - these have many common issues and can generally be lumped together
- Both design work (incl. simulations) and component R&D are involved
- In the NF and MC case, there is already close collaboration
 - US: under auspices of Muon Accelerator Program (MAP), led by Fermilab
 - UK: as part of MICE and UKNF activities

LE Muon Technical Challenges

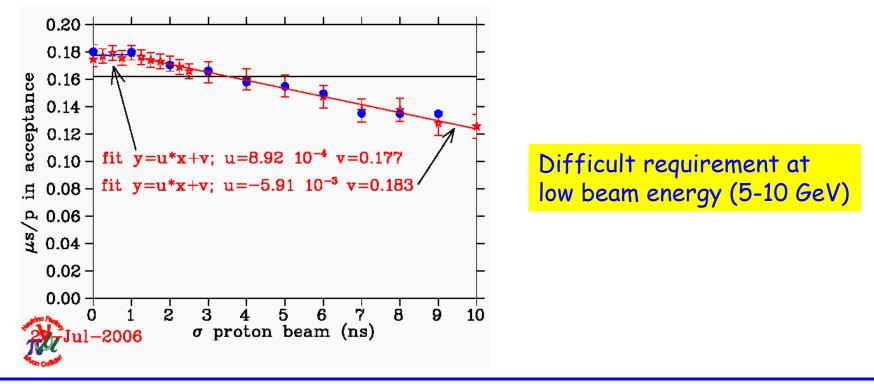

- Two main experimental goals
 - μ \rightarrow e and g 2


 $_{\circ}\,\text{plans}$ in US (Fermilab) and in Japan

- Challenges
 - fabrication of long curved solenoids
 - control of backgrounds
 - suppression of out-of-time particles
 at 10⁻⁹ or 10⁻¹⁰ level

· VLENF

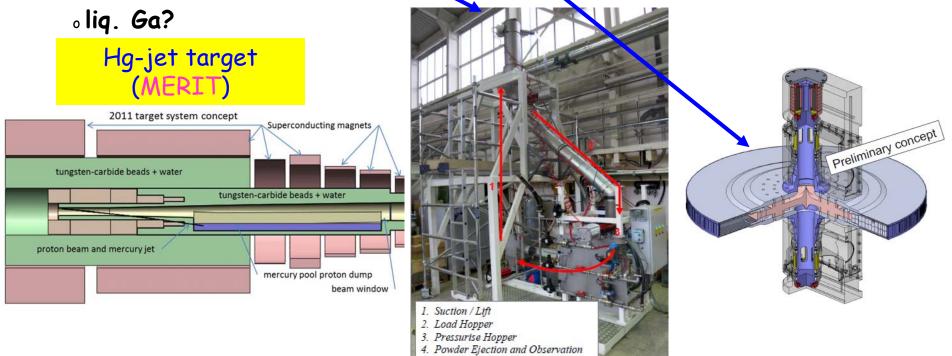
- large acceptance ring design
- develop and test instrumentation
- detector design optimization
 - lower E than NF; magnetized
 continue IDS-NF collaboration



- Muons created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - low production rate
 - $_{\rm o}\,\text{need}$ target that can tolerate multi-MW beam
 - large energy spread and transverse phase space
 - ${\scriptstyle \circ}\, \text{need}$ emittance cooling
 - ${}_{\scriptscriptstyle 0}$ high-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 μs at rest)
 - puts premium on rapid beam manipulations
 - high-gradient RF cavities (in magnetic field for cooling)
 - ${\scriptstyle \circ}$ presently untested ionization cooling technique
 - $_{\circ}$ fast acceleration system

NF Technical Challenges (2)

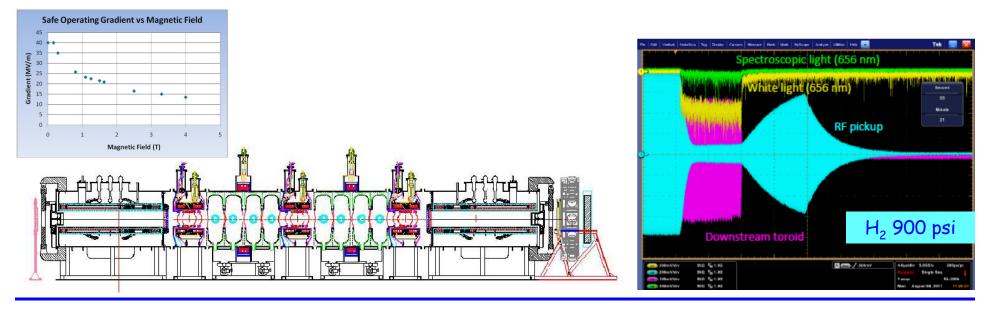
- Proton beam parameters
 - desired proton intensity for Neutrino Factory is 4 MW
 - $_{\circ}\,$ e.g., 3.1 x 10^{15} p/s at 8 GeV or 6.2 x 10^{13} p/pulse at 50 Hz
 - desired rms bunch length is 1-3 ns to minimize intensity loss
 - not easily done at high intensity and moderate energy



January 14, 2012

NF Technical Challenges (3)

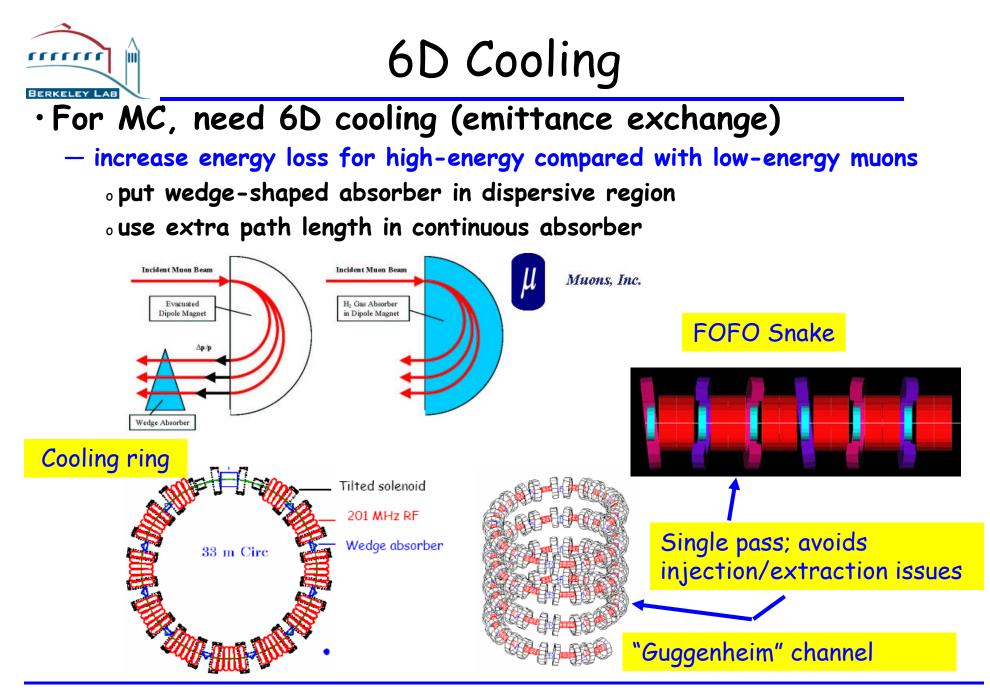
- Target
 - favored target concept based on Hg jet in 20-T solenoid
 - $_{\rm o}$ jet velocity of ~20 m/s establishes "new" target each beam pulse
 - magnet shielding is daunting, but appears manageable
 - alternative approaches (powder or solid targets) also being pursued within EUROnu (both are UK efforts)



NF Technical Challenges (4)

Normal conducting RF in magnetic field

- cooling channel requires this
 - 805-MHz experiments indicate substantial degradation of gradient in such conditions
 - initial 201-MHz tests show similar behavior (coupler issue?)
 - ${}_{\circ}\,\text{gas-filled}$ cavities avoid performance degradation in magnetic field
 - effects of intense ionizing radiation traversing gas now under study
 - first indications: severe beam loading but no sign of breakdown



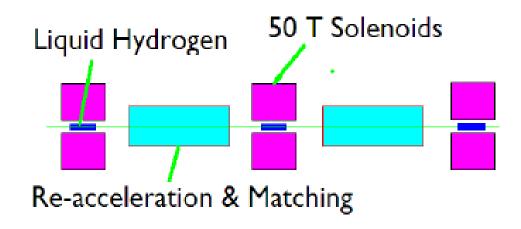
MC Technical Challenges

- \cdot In addition to NF challenges, MC has a few of its own
- Longitudinal cooling is required in addition to the transverse cooling used for the NF
 - actual designs for Guggenheim, helical cooling, FOFO snake, etc. must be developed
- \bullet Final transverse cooling to very low emittance (~25 $\mu\text{m})$ required
 - present schemes demand extreme parameters
 - ${}_{\scriptscriptstyle 0}$ low energy, long bunches, very high solenoidal fields, thin absorbers
 - none of these are easy

Very rapid acceleration up to energies of a few TeV

BERKELEY LAB

Final Cooling


 $\boldsymbol{\cdot}$ Final cooling to 25 $\mu \textbf{m}$ emittance requires strong solenoids

- not exactly a catalog item \Rightarrow R&D effort
- 40-50 T is not a hard edge, but "more is better"

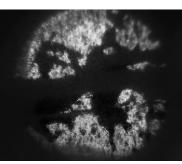
\cdot 45 T hybrid device exists at NHMFL

- very high power device
- exploring use of HTS for this task

• most likely technology to work

R&D Activities

- To transform challenges to opportunities, worldwide R&D efforts are under way
 - U.S. contributions to these studies via MAP
 - UK contributions via UKNF
 - coordination under IDS-NF auspices
 - main items:
 - target
 - RF (MuCool)
 - cooling (MICE)


Targetry R&D

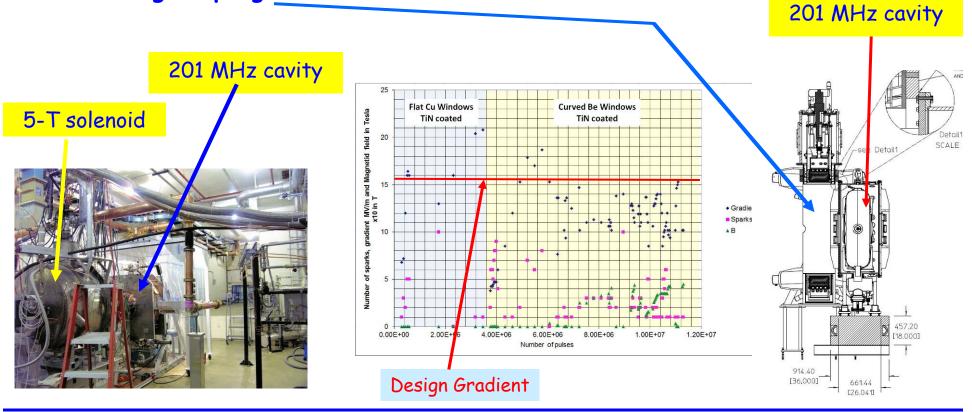
- Target for 4 MW proton beam is a real challenge
 - MERIT system test (2007) was proof-of-principle test of Hg jet target in 15 T solenoid
 - carried out by collaboration of BNL, CERN, and RAL
 - looked at disruption length, filament velocity, production fall-off due to jet disruption ("pump-probe")
 - concluded that power handling of target is adequate
 - $_{\circ}\,disruption$ length of 28 cm \Rightarrow 70 Hz rep. rate at 20 m/s
 - $_{\circ}\,115$ kJ per pulse x 70 Hz gives 8 MW of beam power
 - 4 MW design value should be achievable

 $_{\circ}$ no damage to containment vessel from 60 m/s filaments

- Issues to pursue (none require beam)
 - splash mitigation in Hg beam dump (from both beam and spent jet)
 - thermal and radiation environment of nearby magnets
 - other liquid metals (Pb-Bi eutectic; Ga)

MERIT serves as a satisfactory proof-of-principle of Hg-jet concept

MuCool R&D


- MuCool program does R&D on cooling channel components
 - RF cavities, absorbers
 - $_{\rm o}\,\text{focus}$ in recent years has been RF
- Make use of MuCool Test Area (MTA) at Fermilab
 - located at end of 400 MeV linac and shielded for beam tests
 first beam arrived February 28, 2011

MuCool Results

201-MHz cavity shows degradation

- reached 21 MV/m without magnetic field
- initial tests in fringe field of 5-T solenoid give reduced gradient
 - ${\scriptstyle \circ}\,\,\text{and}\,\,\text{lots}\,\,\text{of}\,\,\text{scatter}$
- awaiting coupling coil to achieve realistic field

January 14, 2012

rrrr

NCRF Strategy

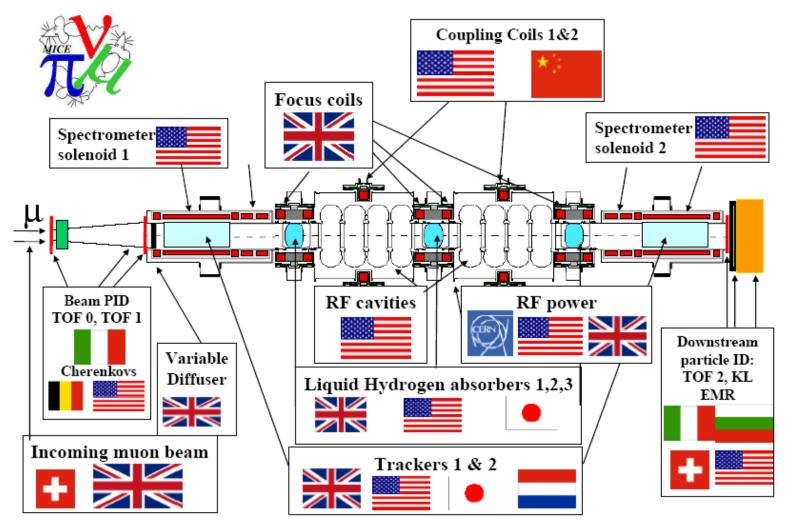
• Continue assessment of alternative RF technologies

- goal: identify ≥1 approach to eliminate (or reduce to acceptable level) gradient degradation in magnetic field
 - $_{\circ}$ vacuum cavities
 - reduce or eliminate surface electric field enhancements
 - SCRF processing techniques (electropolish plus HP water rinse)
 - UK has been involved in this activity
 - ALD techniques (smooth surface with conformal coating at molecular level)
 - materials studies
 - + look for materials resistant to damage (Be looks interesting)
 - o high-pressure gas-filled RF ("HPRF") cavities
 - use beam tests to see if gas breaks down with intense beam
 - simulations to understand/predict behavior

MICE

BERKELEY LAB

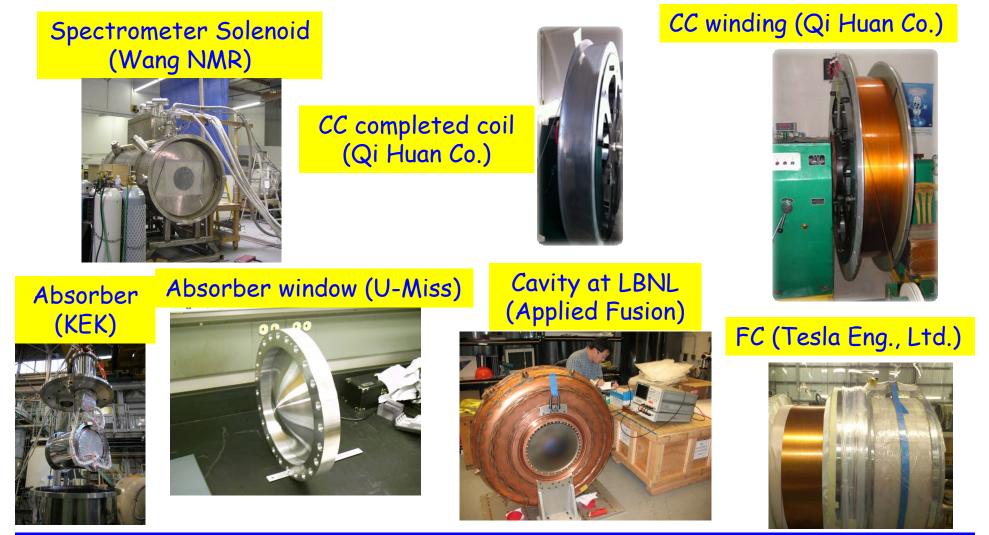
- Neutrino Factory (≈10²¹ v_e aimed at far detector per 10⁷-s year) or Muon Collider depends on ionization cooling
 - straightforward physics but not experimentally demonstrated
 - expensive (O(1B\$)) facility, so prudence dictates demo of key principle
- Cooling demonstration aims to:
 - design, engineer, and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
 - place this apparatus in a muon beam and measure its performance in a variety of modes of operation and beam conditions


Another key aim:

- show that design tools (simulation codes) agree with experiment
 gives confidence that we can optimize design of an actual facility
- Getting the components fabricated and operating properly teaches us about both the cost and complexity of a muon cooling channel
 - measuring the "expected" cooling will serve as a proof of principle for the ionization cooling technique

MICE Contributors

Many international partners contributing



January 14, 2012

Cooling Channel Components

All cooling channel components are now in production

January 14, 2012

Synergies-LE Muons

- Both US and UK teams working on curved solenoid beam lines
 - sharing design expertise should benefit both
 - modeling and simulations for backgrounds should also be common theme
 - joint development of beam diagnostics
 - \circ beam extinction is a challenge
 - sharing R&D information, e.g., radiation studies
- · PRISM study for FFAG-based $\mu \rightarrow e$
 - injection/extraction for FFAG is problem of common interest
 - kicker design and *testing*
 - IDS-NF, medical FFAG, VLENF, ADS device...
 - EMMA kickers probably not good "role models"
 - diagnostics that work over wide range of orbit positions
 - IDS-NF, medical FFAG, VLENF, ADS device...

Synergies-NF/MC(1)

Proton driver expertise is most valuable UK synergy

 — ISIS staff well versed in issues of producing and handling intense proton beams

 $_{\rm o}\,\text{linac}$, chopper already being studied in UK "FETS"

- ${\scriptstyle \circ}$ plenty of experience measuring and controlling proton beam loss
 - injection, extraction, circulating beam
- this expertise can also be applied to muon beam losses
 - $_{\rm o}\,{\rm such}$ work already under way as part of IDS-NF study
 - beam loss in front-end of muon channel is severe

• needs to be quantified, then mitigated

- Work on FFAG accelerators likely to play a role in both NF or MC acceleration scheme
 - EMMA measurements will be important to future design
 - oneed to make sure that all relevant measurements are completed
 - need transmission; effects of slower resonance crossing
 - injection/extraction kicker concept being developed in UK now for IDS-NF

Synergies-NF/MC(2)

- Target
 - work on alternative solutions (powder, solid) is not being done elsewhere
 - examination of liquid Ga option needs study
 - ${\scriptstyle \circ}$ shortage of experienced engineering help in both US and UK
 - test facility definitely needed
 - ${\scriptstyle \circ}\,$ observed damage to targets never well-simulated before the fact
- \cdot RF materials investigations
 - UK has expertise in processing and materials characterization
 - $_{\circ}$ ALD work in US is under-manned
 - could use help here to evaluate efficacy of this approach
 - mechanism for breakdown still needs study

\cdot SC magnets

- UK is presently providing engineering support for MICE magnet fabrication
 - ${}_{\scriptscriptstyle 0}$ expertise in MLI installation from satellite programs is available

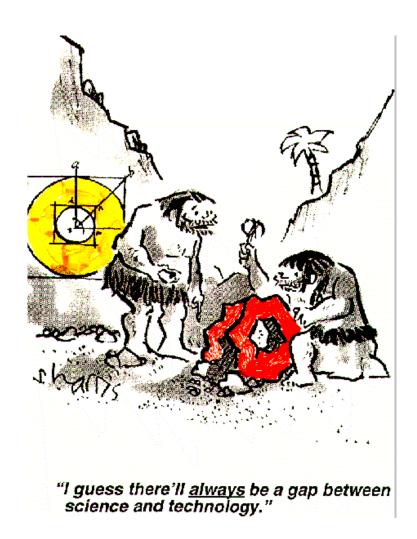
- a real benefit for cryo-cooled magnets

<u>— high-field solenoids would be a fruitful area for additional collaboration</u>

Synergies-NF/MC(3)

- · SCRF
 - cavities needed for all acceleration systems
 - ${\scriptstyle \circ}$ along with robust and efficient power systems
- Simulations
 - detailed simulations needed to finalize NF design
 - $_{\rm o}\,{\rm even}$ more needed for MC design
 - especially cooling channel (6D, final cooling)
 - UK has complementary expertise in this area
- Diagnostics
 - general need for decay ring, FFAG, RLAs, linac, cooling channel,...
- RCS design and components for collider
 - ISIS expertise could help here
- 6D cooling and final cooling
 - joint effort on design and testing would further MC progress
 - can MICE Hall infrastructure be useful?

Summary


- Substantial progress being made toward design of accelerator-based muon facilities
- Work extends state-of-the-art in accelerator science
 - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- Tasks are challenging and would clearly benefit from additional regional collaboration
 - MuCool Test Area (US)
 - MICE Hall (UK)

Final Thought

Paper studies alone are *not enough*

We need to build and test things!

January 14, 2012