
Chroma for DUNE 

Ben Land
June 7, 2021



What is Chroma?

● Python package with CUDA code to propagate optical photons on a GPU
○ Written by S. Seibert and A. LaTorre in 2011

● Represents the geometry as a triangular mesh
○ Leverages well developed optical ray tracing algorithms

○ Much faster tracking compared to Geant4 volume-based approach

● Interfaces with Geant4 to generate photons from physical interactions
○ Photons are killed immediately in Geant4, propagated in Chroma, returned to Geant4

○ Can also receive arbitrary photon propagation requests over network socket 

○ Can further do stand-alone optical-only simulations

● About 200x faster than an equivalent Geant4 simulation 
○ Does require a reasonable GPU (supports any GPU with CUDA)

○ GPUs becoming increasingly available for high performance computing

● See the SNOWMASS LOI on Chroma and the Chroma GitHub repository

https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF0-NF10_NF0_Chroma-045.pdf
https://github.com/BenLand100/chroma


Why use Chroma?

● Specifically for DUNE / liquid argon
○ LAr scintillation produces a lot of photons, well suited for GPU acceleration 

○ Chroma already supports all critical optical processes

■ Wavelength shifting materials, dichroic filters, etc.

○ Recent work implementing a fully optical LAr detector looks promising

○ Some work in the last several weeks prepping Chroma for DUNE simulations

● In general
○ CAD drawings can be directly imported into simulation as STL meshes

○ Fine control over the surface properties of each triangle in mesh

○ Relatively small, easily maintainable Python codebase 

○ Up to date with recent Geant4, Root, Boost, and Python3 versions

○ Easy integration into both ROOT and Python analysis frameworks



Chroma Example: Dichroicon

Dichroic
Test Setup Dichroicon + LAPPD

Simulated 100 MeV 
event (long wavelength)

Benchtop Model
1 kt pure scintillator
90% coverage of dichroicons

Detail view of detector model

Phys. Rev. D 101, 072002 (2020)

https://link.aps.org/doi/10.1103/PhysRevD.101.072002


Chroma Example: Theia

Theia-100
100 kt liquid scintillator
90% coverage combined
LAPPD+PMTs

Theia-25 
DUNE-module sized

Eur. Phys. J. C 80, 416 (2020)

https://doi.org/10.1140/epjc/s10052-020-7977-8


Chroma Example: Artemis 

DUNE-module sized
LAr detector with 
90% coverage of TPB-coated PMTs

5 MeV electron simulation



Chroma Example: Artemis 

DUNE-module sized
LAr detector with 
90% coverage of TPB-coated PMTs



NEW: GDML Geometry import for Chroma

● Chroma can now parse GDML files and create matching geometries
○ For now, only supports features in GDML used by DUNE

○ Requires a python method to map volume names + material names to optical properties



GDML Vertical Drift geometry



GDML Horizontal Drift geometry



GDML with wires works too! (but slower)



Runtime / GPU Requirements

● HDrift 5 MeV electrons
○ 1270 MB GPU RAM (no-wires)
○ 1340 MB GPU RAM (wires)
○ 53k generated photons

■ 2k detected photons
○ 40 ms / event (no-wires)
○ 2 seconds / event (wires)

● VDrift 5 MeV electrons
○ 1220 MB GPU RAM (no-wires)
○ 1300 MB GPU RAM (wires)
○ 53k generated photons

■ 3k detected photons
○ 30 ms / event (no-wires)
○ 100 ms / event (wires)

● HDrift 5 GeV electrons
○ Same geometry RAM requirements
○ 10m generated photons

■ 500MB of photon info (could be batched)
■ 3.1m detected photons

○ 50 seconds / event (no-wires)
○ 40 minutes / event (wires)

● VDrift 5 GeV electrons
○ Same geometry RAM requirements
○ 10m generated photons

■ 500MB of photon info (could be batched)
■ 340k detected photons

○ 40 seconds / event (no-wires)
○ 2 minutes / event (wires)

Benchmarking on GeForce GTX 1060
1280 CUDA cores / 6 GB of RAM

(in my laptop)



Next Steps: integration with DUNE simulations

● Option: add Chroma as photon propagator in LArSoft
○ c.f. existing fast photon simulation
○ Requires LArSoft to package and launch Chroma
○ Requires simulations to run on (or near) machine with GPU

■ Typically communicate with Chroma via ZMQ socket

● Option: use Chroma to process simulation outputs 
○ Read generated photon information from .root files
○ A multi-stage simulation approach (simulate -> propagate -> analyze)
○ No requirement on larsim to know anything about Chroma

■ Chroma must be able to read/write files LArSoft understands
○ No requirement to run physics simulation on (or near) GPU machines


