Chroma for DUNE

Ben Land
June 7,2021

)

What is Chroma?

e Python package with CUDA code to propagate optical photons on a GPU
o Written by S. Seibert and A. LaTorrein 2011
e Represents the geometry as a triangular mesh
o Leverages well developed optical ray tracing algorithms
o Much faster tracking compared to Geant4 volume-based approach
e Interfaces with Geant4 to generate photons from physical interactions
o Photons are killed immediately in Geant4, propagated in Chroma, returned to Geant4
o Canalso receive arbitrary photon propagation requests over network socket
o Can further do stand-alone optical-only simulations
e About 200x faster than an equivalent Geant4 simulation
o Doesrequire areasonable GPU (supports any GPU with CUDA)
o GPUs becoming increasingly available for high performance computing
e Seethe SNOWMASS LOIl on Chroma and the Chroma GitHub repository

https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF0-NF10_NF0_Chroma-045.pdf
https://github.com/BenLand100/chroma

Why use Chroma?

e Specifically for DUNE / liquid argon

o LAr scintillation produces a lot of photons, well suited for GPU acceleration

o Chroma already supports all critical optical processes

m Wavelength shifting materials, dichroic filters, etc.

o Recent work implementing a fully optical LAr detector looks promising

o Some work in the last several weeks prepping Chroma for DUNE simulations
e Ingeneral
CAD drawings can be directly imported into simulation as STL meshes
Fine control over the surface properties of each triangle in mesh
Relatively small, easily maintainable Python codebase
Up to date with recent Geant4, Root, Boost, and Python3 versions
Easy integration into both ROOT and Python analysis frameworks

o O O O O

Simulated 100 MgV
event (long wavelength)

'. .
®e® o
.
B %o kg

Dichroic
Test Setup

3’ g g

b
*

1 kt pure scintillator s A A
90% coverage of dichroicons s RN S SR S NS

o ¥,
e

Benchtop Model

https://link.aps.org/doi/10.1103/PhysRevD.101.072002

NOCTI
%, “ 2‘)’3}4‘,’0

ookt b4,
ee; g4 6%

RIS
& % LI

RIS

RLDRRRR,

SRNRRIEET eIy eyttt
S "f»‘.{ﬁ'ﬁ:’i:{;:;'.‘:;‘:?,,g;»,,
SRR R Cn e
SR R e e

https://doi.org/10.1140/epjc/s10052-020-7977-8

Generated Photons
1 Al
Cherenkov
[Scintillation

104,

Chroma Example: Artemis .

5 MeV electron simulation
102_

101.

100,

200 400 600 800 1000
Wavelenath (nm)
Generated Photons

1750 ' —
Cherenkov
1500+ [Scintillation

1250+
1000

7507

DUNE-module sized | ool
LAr detector with :
90% coverage of TPB-coated PMTs 250¢

103 102 10! 10° 10' 102 10° 10%
Time (ns)

Detected Photons

103¢ 1 All
Cherenkov
[] Cherenkov (no WLS)
l " i [1 Scintillation
Chroma Example: Artemis |
101 L
10% MMH
200 400 600 800 1000
Wavelength (nm)
D‘etected Photons
[CT) All
400! Cherenkov
[Cherenkov (no WLS)
[Scintillation
300+
200+
DUNE-module sized
LAr detector with ‘ 1007
90% coverage of TPB-coated PMTs

10! 102 103 104
Hit time (ns)

NEW: GDML Geometry import for Chroma

e Chroma can now parse GDML files and create matching geometries
o For now, only supports features in GDML used by DUNE
o Requires a python method to map volume names + material names to optical properties

def dune volume classifier(volume ref, material ref, parent material ref):

if parent material ref == material ref:
if 'OpDetSensitive' not in volume ref:
return 'omit',dict()
if volume ref == 'volWorld':
return 'omit',dict()
outer _material = material map[material ref][0]
if 'OpDetSensitive' in volume ref:
channel type = arapuca to id(volume ref)
assert volume ref == id to arapuca(channel type), \
'Malformed identifier: '+volume_ ref
return ‘pmt',dict(materiall=custom optics.vacuum,
material2=outer material,
color=0xA0A05000,
surface=custom optics.perfect photocathode,
channel type=channel type)
inner material,surface,color = material map[material ref]
return 'solid',dict(materiall=inner material,
material2=outer material,
color=color,
surface=None)

from chroma.gdml import GDMLLoader
gdml = GDMLLoader('dunevdl®kt 2view v2 1x8x1l4pdsref.gdml')

from chroma.detector import Detector
det = Detector()
det = gdml.build detector(
detector=det,
volume classifier=dune volume classifier)

from chroma.loader import create geometry from obj
from chroma.camera import Camera

geo = create geometry from obj(det)

viewer = Camera(geo, size=(1000,1000))
viewer.start()

GDML Vertical Drift geometry

GDML with wires works too! (but slower)

Runtime / GPU Requirements

e HDrift 5MeV electrons e HDrift 5 GeV electrons
o) 1270 MB GPU RAM (no-wires) o Same geometry RAM requirements
o 1340 MB GPU RAM (wires) o 10m generated photons
o 53k generated photons m 500MB of photon info (could be batched)
m 2k detected photons m 3.1mdetected photons
o 40 ms/event (no-wires) o 50seconds/event (no-wires)
o 2seconds/event (wires) o 40 minutes/ event (wires)
e VDrift 5MeV electrons e VDrift 5 GeV electrons
o) 1220 MB GPU RAM (no-wires) o Same geometry RAM requirements
o 1300 MB GPU RAM (wires) o 10m generated photons
o 53k generated photons m 500MB of photon info (could be batched)
m 3kdetected photons m 340k detected photons
30 ms/ event (no-wires) o 40seconds/event (no-wires)
o 100 ms / event (wires) o 2minutes/event (wires)

Benchmarking on GeForce GTX 1060
1280 CUDA cores / 6 GB of RAM
(in my laptop)

Next Steps: integration with DUNE simulations

e Option: add Chroma as photon propagator in LArSoft

O

O

O

c.f. existing fast photon simulation

Requires LArSoft to package and launch Chroma

Requires simulations to run on (or near) machine with GPU
m Typically communicate with Chroma via ZMQ socket

e Option: use Chroma to process simulation outputs

O

O

O

Read generated photon information from .root files
A multi-stage simulation approach (simulate -> propagate -> analyze)
No requirement on larsim to know anything about Chroma

m Chroma must be able to read/write files LArSoft understands
No requirement to run physics simulation on (or near) GPU machines

