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What is Particle Physics?
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What is Particle Physics?

+ q;i 8.’; Y/ﬂ""‘ L. c.
Broader applications than “just particles” — we’ll get to those later. 4~ (;i ?5[' ~V{(8)
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A bit of history...

* Physicists today claim to know what
“everything” is made up of — the
Standard Model. How did we get here?
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~2000 years In one slide

AN

F'iré water
AIr €arth

2= Fermilab



~2000 years In one slide
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~2000 years In one slide

The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CaH1sN4O2
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C — carbor atom

H — hydragen atom
N — nitrogen atom

0 — oxygen atom
CH3 — methyl radical
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~2000 years In one slide

F'ire Water
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A I r € - . The caffeine molecule
NS chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CgH1oN4O2

C — carbon atom
H — hydrogen atom
N — nitrogen atom

0 — oxygen atom
CH3z — methyl radical

Group = 1

Pericd
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He
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20 || 21 22 (|23 (|24 || 25| 26 || 27 ||28 (|29 |30 |[31([32]||33||34](|35]||36
Ca|| Sc Ti || V|[Cr|[Mn| Fe ||Co||Ni|[|Cu||Zn||Ga||Ge||As || Se || Br || Kr
38 40 (| 41 (|42 |1 43| 44 (|45 (|46 || 4/ |1 48 (|49 || 90 || 51 || 52 || 53 || 54
Sr Zr |[Nb|[Mo|| Tc | Ru||{Rh||Pd||Ag||Cd|| In[|Sn||Sk||Te || | || Xe
956 || 57 72 (|73 || 74 || 75| 76 || 77 || 78 || 79|80 |[81||82|| 83|84 ||85]|| 86
Ba|| La Hf || Ta || W |[Re| Os|| Ir || Pt ||Au|[{Hg]|| Tl ||Pb || Bi || Po|| At [| Rn
88 (|89 |*1104(|105|{106||107| 108|(109|(110||1171|[112([113||(114||115(|116||117|(118
Ra||Ac|*| Rf [| Db || Sg || Bh s Mt ||Ds|[Rg||Cn||[Nh|lFI| Mc|lLv||Ts||Og
58 (|59 ||6e0 || 61| 62| 63 ||64(||65|/66||67 |/ 68| 69|70 71
Ce|| Pr|{[Nd| Pm| Sm| Eu||Gd|[[{Tb || Dy ||Ho || Er ||Tm|| Yb || Lu
90 [[ 91 (|92 |/ 93| 94 || 95 (|96 |[97 || 98 [| 99 |{100|(101||102([103
Th{|Pa|| U |[Np| Pu|[[Am||Cm|| Bk || Ci || Es |[Fm || Md|[Nc || Lr
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~2000 years In one slide
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The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CagH1aN4O2

C — carbon atom
H — hydrogen atem
N — nitrogen atom

0 — oxygen atom
CH3z — methyl radical

Group = 1

Pericd

w n

BN

(2] [os] 2 =] 3= = =-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2

He
4 5 6 7 8 9 (|10
Be BI[CI||NI||O]||F |[|Ne
12 13 (114 (|15 || 16 || 17 || 18
Mg Al [[Si|| P [| S || CI||Ar
20 [| 21 22 || 23 || 24|/ 25| 26 || 27 || 28129 ||30||31||32(|33||34]||35]||36
Ca|| Sc Ti || V[ Cr|[Mn| Fe [[Co|| Ni |[Cul||Zn||Ga|[Ge|| As || Se || Br || Kr
38 (| 39 40 || 41 || 42|/ 43| 44 (| 45|/ 46 || 4/ || 48|49 || 90 || 51 || 52 (|53 || 54
Sri|| Y Zr [|[Nb[[Mo|| Te| Ru||Rh||Pd||Ag||Cd|| In |[[Sn||SkE|[[Te ||l I || Xe
56 || 57 72|73 || 74 || 75| 76 || 77 || 78 || 79 (|80 ([ 81|82 |/ 83||84|| 85| 86
Ba|| La Hf || Ta|| W [|Re| Os|| Ir [| Pt ||Au||Hg]|| TI || Pb|| Bi || Po|| At || Rn
88 || 89 104(1105|{106||107| 108|[109(|{110([1171({112|(113||114||115[|116([117(|118
Ra || Ac Rf |[|Db|[Sg |/ Bh| Hs || Mt || Ds||Rg||Cn||[Nh|| FI [[Mc|| Lv || Ts g

58 [| 59 || 60 || 61| 62 || 63 (|64 || 65|/ 66|67 || 68|/69|70| 71

Ce || Pr|{[Nd||Pm| Sm|| Eu||Gd|| Tb || Dy ||Ho || Er [[Tm|[Yb || Lu

*190 || 91 (|92 93| 94 || 95|96 || 97 || 98 || 99 [|100|{101({102([103
Th|[Pa|| U |[[Np| Pu|[Am||Cm||Bk || Ci || Es |[Fm|/Md]||Nc || Lr
*Not to scale.
electron
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~2000 years In one slide
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The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CagH1aN4O2

C — carbon atom
H — hydrogen atem
N — nitrogen atom

0 — oxygen atom
CH3z — methyl radical

Group = 1
Pericd

2 3 4 5 6 7 8 9 10 11 12 18 14 15 16 17 18
2

He
) 6 7 8 9 10
BI|[C|IN|l O F || Ne
13 || 14 |15 || 16 |[ 17 || 18
Al || Si|| P S || CI || Ar
21 22 23 (124 (|25 26|27 ||28||129 |30 (|31 (|32 (|33 |[34]||35]||36
Sc Ti || V[ Cr|[Mn| Fe [[Co|| Ni |[Cul||Zn||Ga|[Ge|| As || Se || Br || Kr
39 40 || 41 || 42 || 43| 44 (|45 (|46 || 4/ || 48 ||49 || 90 || 51 (|| 52| 53 || 54
V' Zr |INb|[Mo|| Tc| Ru||Rh||Pd||Ag||Cd|| In||Sn||SE|[Te || I || Xe
57 72 (|73 (|74 || 75| 76 || 77 || 78 ([ 79|80 ||81([82| 83| 84||85]|| 86
La Hf || Ta|| W [|Re| Os|| Ir [| Pt ||Au||Hg]|| TI || Pb|| Bi || Po|| At || Rn
89 104(1105|{106||107| 108|[109(|{110([1171({112|(113||114||115[|116([117(|118
Ac|*| Rf [|Db|| Sg||Bh| Hs || Mt || Ds||Rg||Cn|[Nh|| FI [|Mc||Lv|| Ts||Og

58 || 59|/ 60|/ 61| 62|63 ||64(||B5| 66 ||67 (/68|69 (| 70| 71

Ce || Pr|{[Nd||Pm| Sm|| Eu||Gd|| Tb || Dy ||Ho || Er [[Tm|[Yb || Lu

*190 (191 (| 92|93 94 || 95 |(96 (|97 || 98 |[99 ({100|/101|(102(|103

Th|[Pa|| U |[[Np| Pu|[Am||Cm||Bk || Ci || Es |[Fm|/Md]||Nc || Lr
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Early 1900s
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Early 1900s

* To the best of our knowledge in the
early 1900s, everything that we see can
be built out of protons, neutrons, and

O electrons.

Proton
O
Nucleus

Neutron

(5 Electron
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Early 1900s

O

/@ Proton

Nucleus
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Neutron

Electron

* To the best of our knowledge in the
early 1900s, everything that we see can
be built out of protons, neutrons, and
electrons.

* Protons and neutrons build up the
nuclel of atoms, and electrons occupy
orbitals around the nucleus.
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Early 1900s

O

/@ Proton

Nucleus

G

O

Neutron

Electron

* To the best of our knowledge in the
early 1900s, everything that we see can
be built out of protons, neutrons, and
electrons.

* Protons and neutrons build up the
nuclel of atoms, and electrons occupy
orbitals around the nucleus.

* Different models of the atom were
explored, leading to the development of
gquantum mechanics.
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Let’s put a pin In particles
for now.
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Let’s put a pin In particles
for now.

And pivot to every particle physicist’s
favorite tool: symmetries.
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One of the simplest symmetries in nature: Translational Invariance

* Imagine riding a bike on a flat road...

XM(‘LW“
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One of the simplest symmetries in nature: Translational Invariance

* Imagine riding a bike on a flat road...

)IMI(L&M

* A short time later,

XSW(&&M
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One of the simplest symmetries in nature: Translational Invariance

* Imagine riding a bike on a flat road...

)IMI(L&M

* A short time later,

XSW(&&M

* From the bike’s point of view, the surrounding road is unchanged.
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One of the simplest symmetries in nature: Translational Invariance

XM(‘LW“
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One of the simplest symmetries in nature: Translational Invariance

O U

* The flat road exhibits a translational invariance symmetry, and, as a result,
the bike conserves linear momentum.
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Slightly more complicated: Time-translation Invariance

» (fancy way of saying “constant over time”)

\C
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Slightly more complicated: Time-translation Invariance

» (fancy way of saying “constant over time”)

G,’A * Now with a bike riding over a

(7

hilly terrain — what
conservation laws can we

apply?
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Slightly more complicated: Time-translation Invariance

» (fancy way of saying “constant over time”)

G,’A * Now with a bike riding over a
Vo hilly terrain — what
conservation laws can we
apply?
* Conservation of mechanical
energy!
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ether’s Theorem

2t Fermilab



Noether’s Theorem

“To every differential symmetry generated by local
actions there corresponds a conserved current.”
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Noether’s Theorem

“To every differential symmetry generated by local
actions there corresponds a conserved current.”

“For every continuous symmetry that you can identify,
there is some conserved quantity in the system”
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Noether’s Theorem

“To every differential symmetry generated by local
actions there corresponds a conserved current.”

“For every continuous symmetry that you can identify,
there is some conserved quantity in the system”

Translational Invariance Linear Momentum
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Noether’s Theorem

“To every differential symmetry generated by local
actions there corresponds a conserved current.”

“For every continuous symmetry that you can identify,
there is some conserved quantity in the system”

Translational Invariance Linear Momentum

Time-translational Invariance Mechanical Energy
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Applying Symmetries to Protons and Neutrons
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Applying Symmetries to Protons and Neutrons

* Mid-1930s: scientists observed that
protons and neutrons have very similar
masses (both much larger than the
electron’s), and behave similarly in their
Interactions. Vi
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Applying Symmetries to Protons and Neutrons

* Mid-1930s: scientists observed that
protons and neutrons have very similar
masses (both much larger than the
electron’s), and behave similarly in their
Interactions.

* Introduce some spin-like symmetry
where the proton has “isospin” up, and
the neutron has “isospin” down.
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Applying Symmetries to Protons and Neutrons

* Mid-1930s: scientists observed that
protons and neutrons have very similar
masses (both much larger than the
electron’s), and behave similarly in their
Interactions. Vi

» Introduce some spin-like symmetry ” _
where the proton has “isospin” up, and s
the neutron has “isospin” down. s

* In the meantime, more exotic particles
were being discovered In cosmic rays
— plons and muons.
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The Eightfold Way
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The Eightfold Way

* Mesons, Baryons, and their interactions can be described using isospin and charge.
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The Eightfold Way

* Mesons, Baryons, and their interactions can be described using isospin and charge.
More Hypercharge

More Charge

Jf More Isospin
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The Eightfold Way

* Mesons, Baryons, and their interactions can be described using isospin and charge.
More Hypercharge

More Charge

Jf More Isospin

Mesons, like the charged pions, mediate interactions between these hadrons.
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Gell-Mann, Zweig, and Quarks

* Proposal: protons/neutrons/etc. are not fundamental particles, but made up
of three different types of quarks: up, down, and strange.
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Gell-Mann, Zweig, and Quarks

* Proposal: protons/neutrons/etc. are not fundamental particles, but made up
of three different types of quarks: up, down, and strange.
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Gell-Mann, Zweig, and Quarks

* Proposal: protons/neutrons/etc. are not fundamental particles, but made up
of three different types of quarks: up, down, and strange.

—
— U
I

The quarks interact under a symmetry principle called “SU(3)”, a type of symmetry called a Lie group.

2= Fermilab
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Three quarks to Six quarks
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Three quarks to Six quarks

* Over the next several decades, three more quarks (charm, bottom, and top)
were discovered.
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Three quarks to Six quarks

* Over the next several decades, three more quarks (charm, bottom, and top)
were discovered.

* The SU(3) symmetry originally proposed to explain the behavior of the (up,
down, strange) quark system had to be modified to accommodate all six
quarks.
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Three quarks to Six quarks

* Over the next several decades, three more quarks (charm, bottom, and top)
were discovered.

* The SU(3) symmetry originally proposed to explain the behavior of the (up,

down, strange) quark system had to be modified to accommodate all six
quarks.

* This led to the development of Quantum Chromodynamics (QCD), which
uses a different SU(3) symmetry of “color” to describe all quark interactions.

2= Fermilab
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So, how do we use symmetries & particles together?
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So, how do we use symmetries & particles together?
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So, how do we use symmetries & particles together?
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

2= Fermilab
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

%= (0,07) ('0) %= n=(exnd)
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

%= (0,07) ('0) %= n=(exnd)

H

 Apply some transformation on the particle field ¢
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

%= (0,07) ('0) %= n=(exnd)

H

 Apply some transformation on the particle field ¢

b= ¢ ="
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

Z = (9,4 ) (9"9) == 1= (tx)
— //t IM dxﬂ, //t % % %
 Apply some transformation on the particle field ¢
b~ ¢ ="y

0 — 0, = e [i (0,0) 0+ (aﬂqb)]
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

Z = (9,4 ) (9"9) == 1= (tx)
— //t Iu dx//t, //t % % %
 Apply some transformation on the particle field ¢
b~ ¢ ="y

0 — 0, = e [i (0,0) 0+ (aﬂqb)]

* The Lagrangian will no longer be invariant — need to “promote” the partial
derivative to a gauge-covariant derivative,
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What are these “SU(3)” Lie group symmetries?

* Most common symmetries used in particle physics are called “local transformations”,
where we apply some transformation to the Lagrangian but it remains unchanged.

Z = (9,4 ) (9"9) == 1= (tx)
— //t Iu dx//t, //t % % %
 Apply some transformation on the particle field ¢
b~ ¢ ="y

0 — 0, = e [i (0,0) 0+ (aﬂqb)]

* The Lagrangian will no longer be invariant — need to “promote” the partial
derivative to a gauge-covariant derivative,

0, > 0,—igA, =D, A, — Gauge field

2= Fermilab
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Gauge Symmetries introduce new Fields/Particles

0, > 0,—igA, =D, A, — Gauge field

2= Fermilab
16



Gauge Symmetries introduce new Fields/Particles

0, > 0,—igA, =D, A, — Gauge field

* The field A, being introduced here acts as a "force carrier” between particles,
often referred to as a gauge boson.
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Gauge Symmetries introduce new Fields/Particles

0, > 0,—igA, =D, A, — Gauge field

* The field A, being introduced here acts as a "force carrier” between particles,
often referred to as a gauge boson.

Particle(s) + Gauge Symmetry — Description of Interactions
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Gauge Symmetries introduce new Fields/Particles

0, > 0,—igA, =D, A, — Gauge field

* The field A, being introduced here acts as a "force carrier” between particles,
often referred to as a gauge boson.

Particle(s) + Gauge Symmetry — Description of Interactions

Electrons +  U(1) gauge symmetry —> Quantum Electrodynamics (QED)

2% Fermilab
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Side-note: Gauge Boson Masses

» If we wanted the particle A* to have a mass, we need a term in the
Lagrangian that looks like

A mzAﬂA/"
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Side-note: Gauge Boson Masses

» If we wanted the particle A* to have a mass, we need a term in the
Lagrangian that looks like

A mzAﬂA/"

* Under the transformation we introduced for this, though, the Lagrangian is
not invariant — gauge bosons must be massless.

1
At —- AF — —0"0
3

2= Fermilab
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Let’s check back in on the Standard Model

18
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Let’s check back in on the Standard Model
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Let’s check back in on the Standard Model

18
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Back to the 1930s: Nuclear Beta Decays

carbon-14 nitrogen-14
nucleus nucleus

B-decay
-_p

neutron

19

+

electron

-

proton
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Back to the 1930s: Nuclear Beta Decays

carbon-14 nitrogen-14
nucleus nucleus

electron

+ ©

B-decay
_—

neutron proton

Example beta decay —a neutron inside a Carbon nucleus spontaneously changes to
a proton (actually a down quark changing to an up quark), and an electron is emitted
to conserve charge.

2t Fermilab
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Conservation of Energy in Beta Decays

20
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Conservation of Energy in Beta Decays

* Two-body final state (nitrogen nucleus + electron) — one can show that the
electron coming out should be “monoenergetic”

2= Fermilab
20



Conservation of Energy in Beta Decays

* Two-body final state (nitrogen nucleus + electron) — one can show that the
electron coming out should be “monoenergetic”

Expected
electron
energy

Observed
spectrum of
energies

Number of electrons

Energy

Endpoint of
spectrum

* Measurements of beta decay show that the electron has a spectrum!

2= Fermilab
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Wolfgang Pauli: “Dear Radioactive Ladies and Gentlemen”

Abgchrift

Physikalisches Institut

der Eldg. Technischen Hochschule Zirich, Lo Des. 1930
Zrich Cloriastrasse

Iiebe Radiocaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst
ansuhfren bitte, Ihnen des niheren auseinandersetsen wird, bin ich
anges ichts der "falachen" Statistik der Ne und Li.6 Kerne, sowie
des kontimuierlichen beta-Spektrums suf oinen versweifelten Ausweg
varfallen um den "Wechselsats™ (1) der Statistik und den Energlesats
su retten. Mimlich die Moglichkeit, es kiinnten elektrisch neutrale
Tellohen, die ich Neutronen nemnen will, in den Kemen existieren,
welghe den Spin 1/2 haben und das Ausschliessungsprinsip befolgen und
‘"heh von ldchtquanten wusserdem noch dadurch unterscheiden, dass sie
mit lichtgeschwindigkeit laufen. Die Magse der Neutronen
von dersalben Orossenordmung wie die Elektronenmasse sein und
nicht grosser als 0,00 Protonermasse.- Das kontimuierliche
Spektrum vire dann verstindlich unter der Anahme, dass beinm
boba-Zorfall mit dem hlektron jeweils noch ein Neutron emittiert
Mird, derart, dass die Summe der Energien von Neutron und klektron

konstant ist,

21

2t Fermilab



Wolfgang Pauli: “Dear Radioactive Ladies and Gentlemen”

Abgchrift
Physikalisches Institut
der Eidg. Technischen Hochschule Zirichy Lo Des. 1930
Zarich Oloriastrasse :
Liebe Radioaktive Damen und Herren, carbon-14 nitrogen-14

ansuhfren bitte, Ihnen des niheren auseinandersetsen wird, bin ich
anges ichts der "falachen" Statistik der Ne und Li.6 Kerne, sowie

des kontimuierlichen beta-Spektrums suf oinen versweifelten Ausweg
varfallen um den "Wechselsats™ (1) der Statistik und den Energlesats
su retten. MNimlich die MSglichkeit, es kinnten elektrisch neutrale
Tellohen, die ich Neutronen nemnen will, in den Kemen existieren,
welche den Spin 1/2 haben und das Ausschliessungsprinsip befolgen und
‘"heh von lichtquanten musserdem noch dadurch unterscheiden, dass sie
mit lichtgeschwindigkeit laufen. Die Magse der Neutronen

von dersalben Orossenordmung wie die Elektronenmasse sein und
nicht grosser als 0,00 Protonermasse.- Das kontimuierliche
Spektrum vire dann verstindlich unter der Anahme, dass beinm
boba-Zoerfall mit dem hlektron jeweils noch ein Neutron emittiert
Mird, derart, dass die Summe der Energien von Neutron und klektron

konstant ist.

electron antineutrino
B-decay
» + + @
proton

neutron

* Pauli’s solution: a new, very weakly interacting “neutrino” comes out of beta
decays as well, stealing some of the energy from the outgoing electron and
producing a spectrum of electron energies.

2= Fermilab
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Just how “weak” is “weakly interacting”?
* Enrico Fermi, shortly after Pauli: Zgermi 2 Gr (lepF l/fn) (7. w,)

22
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Just how “weak” is “weakly interacting”?
* Enrico Fermi, shortly after Pauli: Zgermi 2 Gr (lepF l/fn) (7. w,)

n

s

22
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Just how “weak” is “weakly interacting”?
* Enrico Fermi, shortly after Pauli: Zgermi 2 Gr (lepF l/fn) (7. w,)

n P
o
. . U
* Also predicts processes like muon decay,
//t_ U
e
U

22
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Just how “weak” is “weakly interacting”?
* Enrico Fermi, shortly after Pauli: Zgermi 2 Gr (lepF l/fn) (7. w,)

n P
o

* Also predicts processes like muon decay, g

//t_ U
o

U

. : ( 1GV)
N — m.= C
" (100 GeV)> g

22
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This theory also unveils new symmetry!
» “Weak” SU(2) symmetry relating quarks to leptons:

n % Gy 1
— F -
( p) (e ) (100 GeV)?
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This theory also unveils new symmetry!
» “Weak” SU(2) symmetry relating quarks to leptons:

—_ F 2
U 0 (100 GeV)
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This theory also unveils new symmetry!
» “Weak” SU(2) symmetry relating quarks to leptons:

1
()—=()  ~awaw
U e (100 GeV)

* Force carriers much heavier than the light
fermions are mediating these interactions.
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This theory also unveils new symmetry!
» “Weak” SU(2) symmetry relating quarks to leptons:

—_ F 2
U 0 (100 GeV)

* Force carriers much heavier than the light
fermions are mediating these interactions.

udu Ve * 1983 — the two bosons, W and Z,
e associated with this interaction, were

discovered at CERN.

> ~
-
|

udd
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This theory also unveils new symmetry!

* “Weak” SU(2) symmetry relating quarks to leptons:

23

(i) —()

>~

udu

udd

1
G. ~
"7 (100 GeV)?

* Force carriers much heavier than the light
fermions are mediating these interactions.

1983 — the two bosons, W and Z,
associated with this interaction, were
discovered at CERN.

* Issue: if these are really the gauge bosons
of an SU(2) theory, they should have zero
mass!
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Solution: The final piece of the Standard Model
* The Higgs boson and the Higgs mechanism:

24
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Solution: The final piece of the Standard Model
* The Higgs boson and the Higgs mechanism:

(early universe)
. In the early universe, the weak bosons (and the

photon) are gauge bosons of a SU(2) x U(1)
theory.

+ .

1T
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Solution: The final piece of the Standard Model
* The Higgs boson and the Higgs mechanism:

24

(early universe)

(now) A\

. In the early universe, the weak bosons (and the

photon) are gauge bosons of a SU(2) x U(1)
theory.

> As the universe cools, the Higgs boson feels

compelled to acquire a “vacuum expectation
value” at the bottom of this “Mexican hat”

potential.
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Solution: The final piece of the Standard Model
* The Higgs boson and the Higgs mechanism:

24

(early universe)

(now) A\

> In the early universe, the weak bosons (and the

photon) are gauge bosons of a SU(2) x U(1)
theory.

> As the universe cools, the Higgs boson feels

compelled to acquire a “vacuum expectation
value” at the bottom of this “Mexican hat”

potential.

> This new minimum spontaneously breaks the

SU(2) x U(1) symmetry, resulting in things like
massive particles, massive gauge bosons, and
the resulting “low energy” behavior we see today.
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With the Discovery of the Higgs Boson in 2012,

* The “Standard Model” has been completed.

* Three generations each of “up-type” quarks,

“‘down-type” quarks, charged leptons, and
neutral leptons.

* Interactions described by gauge theory of
SU(3) x SU(2) x U(1), where the Higgs boson
breaks it to SU(3) x U(1).

* Force carriers are the gluons (color, interact
with quarks), photons (electromagnetism,
interact with charged particles), and weak
bosons (weak force, interact with all fermions).
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Completing the Standard
Model was a HUGE triumph.
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Completing the Standard
Model was a HUGE triumph.

However, there are some
problems...
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Three Current Challenges (if time allows)
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Three Current Challenges (if time allows)

* Dark Matter & Dark Energy
* Neutrino Oscillations and Neutrino Masses

* The Higgs Hierarchy Problem
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Dark Matter & Dark Energy

Dan Hooper’s talk (June 3rd)
Noah Kurinsky’s talk (July 13th)
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Overwhelming Evidence for Dark Matter over Many Scales
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Overwhelming Evidence for Dark Matter over Many Scales

Galactic rotation curves: one of the first pieces
of evidence for dark matter.

Velocity
(km s1)

10,000 20,000 30,000 40,000

Distance (light years)

2= Fermilab
29



Overwhelming Evidence for Dark Matter over Many Scales
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Galactic rotation curves: one of the first pieces
of evidence for dark matter.

Using Newtonian physics/Kepler’s laws, we can
calculate what the rotational velocity of a star
orbiting the center of its galaxy should be.
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Overwhelming Evidence for Dark Matter over Many Scales

Galactic rotation curves: one of the first pieces
of evidence for dark matter.
(Rt 1} % Using Newtonian physics/Kepler’s laws, we can
calculate what the rotational velocity of a star
orbiting the center of its galaxy should be.
Looking out at distant galaxies and their
outermost stars, they seem to be going faster
than they should.
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Overwhelming Evidence for Dark Matter over Many Scales

Galactic rotation curves: one of the first pieces
of evidence for dark matter.

o / Using Newtonian physics/Kepler’s laws, we can
calculate what the rotational velocity of a star
orbiting the center of its galaxy should be.
Looking out at distant galaxies and their
outermost stars, they seem to be going faster
than they should.

This implies some sort of “missing” or “dark”
matter that’s pulling these stars around.

10,000 20,000 30,000 40,000

Distance (light years)
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To the best of our knowledge from these observations,

30

Atoms

Dark
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Dark
Matter
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Neutrinos Dark
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Photons
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Atoms
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13.7 BILLION YEARS AGO
(Universe 380,000 years old)
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* The particles we have identified in the Standard
Model make up a small fraction of all of the
observed “energy density” of the universe.
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* A component even bigger than SM particles is
“dark matter”.

* Many, many ideas exist to explain both of these
Issues, but the Standard Model, as formulated,
has nothing to say on them.
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To the best of our knowledge from these observations,

30

Atoms
4.6%

Dark
Energy
72%
Dark
Matter

23%

TODAY

Dark
Matter
63%

Neutrinos
10 %

Photons
15%

Atoms

12%
13.7 BILLION YEARS AGO

(Universe 380,000 years old)

* The particles we have identified in the Standard
Model make up a small fraction of all of the
observed “energy density” of the universe.

* The majority of this energy density (today) is
made up of what we call “dark energy”.

* A component even bigger than SM particles is
“dark matter”.

* Many, many ideas exist to explain both of these
Issues, but the Standard Model, as formulated,
has nothing to say on them.

* Worldwide efforts exist to identify and solve both
of these mysteries.
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Neutrino Oscillations &
Neutrino Masses

Karl Warburton’s talk (June 15th)
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Over several decades, evidence mounted...

32

2= Fermilab



Over several decades, evidence mounted...

32

2= Fermilab



Over several decades, evidence mounted...

ve'e

.......

g " ot - n A h. hs ¥ |
1oy ¥ . ! ...-', 3 .. - : ®
B 4 2 2\ a* F s s s '
- A DN S 84800
» 5‘\‘ .-~'.":.‘ N -:.o-.. "’ .'....'
i, PR N,

B Where are the electron neutrinos going? I

32

2= Fermilab



Over several decades, evidence mounted...
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The atmospheric neutrino puzzle
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Over several decades

The solar neutrino puzzle

32

evidence mounted...

The atmospheric neutrino puzzle
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Over several decades

The solar neutrino puzzle
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evidence mounted...

The atmospheric neutrino puzzle
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Only consistent explanation of these (and more) observations - Neutrinos
have (very small) Masses
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Only consistent explanation of these (and more) observations - Neutrinos
have (very small) Masses
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Like Dark Matter, the Standard Model does not predict neutrino masses!

New physics (new particles and/or interactions) are necessary)
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Upcoming Experiments to better understand Neutrinos
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* Successor to the wildly successful
Super-Kamiokande Experiment in
Japan.
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Upcoming Experiments to better understand Neutrinos
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36 Hyper-Kamiokande

Hyper-Kamiokande

* Successor to the wildly successful
Super-Kamiokande Experiment in
Japan.

* Uses the technique of Water
Cerenkov neutrino detection to
identify neutrino scattering.
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Upcoming Experiments to better understand Neutrinos
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EXPERIMENT

Sanford Underground
Research Facility
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Hyper-Kamiokande
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DETECTOR

Successor to the wildly successtul
Super-Kamiokande Experiment in
Japan.

* Uses the technique of Water
Cerenkov neutrino detection to
identify neutrino scattering.
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Upcoming Experiments to better understand Neutrinos

TR

] DEEP UNDERGROUND
“,tz* Hyper- Kamiokande

EXPERIMENT

Sanford Underground

Research Facili
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NEUTRINO N //
'RODUCTION N,

Hyper-Kamiokande

PARTICLE
DETECTOR

Successor to the wildly successtul
Super-Kamiokande Experiment in
Japan.

* Uses the technique of Water
Cerenkov neutrino detection to
identify neutrino scattering.

* US-based precision neutrino physics
project.
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Upcoming Experiments to better understand Neutrinos
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EXPERIMENT

Hyper-Kamiokande

"+ Successor ' the wildly -~ cessful * US-based precision neutrino physics
Super-Kamiokande Experiment in oroject
Japan. L o
. Uses the techni ¢ \Wat * Built on new, liquid-argon based
CSGS ke °C rt“.que dOt ?ert technology being developed in Fermilab-
STENKOV NEUNO detecton 1o based “short-baseline” neutrino program.

identify neutrino scattering.
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The Higgs Hierarchy Problem

Karri DiPetrillo’s talk (June 22nd)
Don Lincoln’s talk (July 8th)
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The Higgs Boson Mass & Quantum Corrections
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The Higgs Boson Mass & Quantum Corrections

O * Quantum field theory predicts that processes
N u T like these modify the Higgs boson’s mass
""" Q from its “Lagrangian value”.
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The Higgs Boson Mass & Quantum Corrections

O * Quantum field theory predicts that processes
N p T like these modify the Higgs boson’s mass
""" Q - from its “Lagrangian value”.
, * We observe the Higgs mass to be near the
O ) Q ) other weak-scale particles, about 125 GeV.
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The Higgs Boson Mass & Quantum Corrections

36

* Quantum field theory predicts that processes
ike these modify the Higgs boson’s mass
from its “Lagrangian value”.

* We observe the Higgs mass to be near the
other weak-scale particles, about 125 GeV.

* Due to the nature of these diagrams though,
any new mass scale above the weak scale
should pull the Higgs boson mass to be very,
very large.

2 U 2
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The Higgs Boson Mass & Quantum Corrections

36

* Quantum field theory predicts that processes
ike these modify the Higgs boson’s mass
from its “Lagrangian value”.

* We observe the Higgs mass to be near the
other weak-scale particles, about 125 GeV.

* Due to the nature of these diagrams though,
any new mass scale above the weak scale
should pull the Higgs boson mass to be very,
very large.

* Why then, do we see it to be so small?
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Solution: Supersymmetry

37
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Solution: Supersymmetry

* Every standard model particle has a super-symmetric partner. These superparticles
perfectly cancel out all of these quantum corrections to the Higgs mass.
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perfectly cancel out all of these quantum corrections to the Higgs mass.

* Many theories of supersymmetry also include a stable particle that can explain the
observed Dark Matter in the universe.
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Solution: Supersymmetry

* Every standard model particle has a super-symmetric partner. These superparticles
perfectly cancel out all of these quantum corrections to the Higgs mass.

* Many theories of supersymmetry also include a stable particle that can explain the
observed Dark Matter in the universe.

* Supersymmetric theories also may help point to a “theory of everything”, where all
of the observed “low-energy” forces are unified into one at high energy.
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SUSY Searches at the LHC

38
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SUSY Searches at the LHC
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CMS July 2018

Overview of SUSY results: electroweak production
36 My~ (18 TeV)
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Many, many different ways to search for SUSY at colliders. ATLAS and CMS are the two, powerful,
all-purpose detectors at the Large Hadron Collider. To date, no evidence for SUSY has been found.
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