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Broader applications than “just particles” — we’ll get to those later.



A bit of history…

• Physicists today claim to know what 
“everything” is made up of — the 
Standard Model. How did we get here?
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Early 1900s
• To the best of our knowledge in the 

early 1900s, everything that we see can 
be built out of protons, neutrons, and 
electrons.
• Protons and neutrons build up the 

nuclei of atoms, and electrons occupy 
orbitals around the nucleus.
• Different models of the atom were 

explored, leading to the development of 
quantum mechanics.
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And pivot to every particle physicist’s 
favorite tool: symmetries.



One of the simplest symmetries in nature: Translational Invariance
• Imagine riding a bike on a flat road…
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• A short time later,

• From the bike’s point of view, the surrounding road is unchanged.
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• The flat road exhibits a translational invariance symmetry, and, as a result, 
the bike conserves linear momentum.
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• (fancy way of saying “constant over time”)
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• Now with a bike riding over a 
hilly terrain — what 
conservation laws can we 
apply?
• Conservation of mechanical 

energy!
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Noether’s Theorem
“To every differential symmetry generated by local 
actions there corresponds a conserved current.”

“For every continuous symmetry that you can identify, 
there is some conserved quantity in the system”

Translational Invariance

Time-translational Invariance

Linear Momentum

Mechanical Energy
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Applying Symmetries to Protons and Neutrons
• Mid-1930s: scientists observed that 

protons and neutrons have very similar 
masses (both much larger than the 
electron’s), and behave similarly in their 
interactions.
• Introduce some spin-like symmetry 

where the proton has “isospin” up, and 
the neutron has “isospin” down.
• In the meantime, more exotic particles 

were being discovered in cosmic rays 
— pions and muons.
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More Isospin

More Charge
More Hypercharge

Mesons, like the charged pions, mediate interactions between these hadrons.
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of three different types of quarks: up, down, and strange.
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The quarks interact under a symmetry principle called “SU(3)”, a type of symmetry called a Lie group.
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Three quarks to Six quarks
• Over the next several decades, three more quarks (charm, bottom, and top) 

were discovered.
• The SU(3) symmetry originally proposed to explain the behavior of the (up, 

down, strange) quark system had to be modified to accommodate all six 
quarks.
• This led to the development of Quantum Chromodynamics (QCD), which 

uses a different SU(3) symmetry of “color” to describe all quark interactions.
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What are these “SU(3)” Lie group symmetries?
• Most common symmetries used in particle physics are called “local transformations”, 

where we apply some transformation to the Lagrangian but it remains unchanged.
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ℒ = (∂μϕ*) (∂μϕ) ∂μ =
d

dxμ
, xμ = (t, x, y, z)

• Apply some transformation on the particle field ϕ
ϕ → ϕ′ = eiϑ(x)ϕ

∂μϕ → ∂μϕ′ = eiϑ [i (∂μϑ) ϕ + (∂μϕ)]
• The Lagrangian will no longer be invariant — need to “promote” the partial 

derivative to a gauge-covariant derivative,
∂μ → ∂μ − igAμ ≡ Dμ Aμ → Gauge field
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• The field      being introduced here acts as a “force carrier” between particles, 
often referred to as a gauge boson.
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Gauge Symmetries introduce new Fields/Particles

• The field      being introduced here acts as a “force carrier” between particles, 
often referred to as a gauge boson.

16

∂μ → ∂μ − igAμ ≡ Dμ Aμ → Gauge field

Aμ

Particle(s) Gauge Symmetry Description of Interactions+ ⟶

Electrons U(1) gauge symmetry Quantum Electrodynamics (QED)⟶+



Side-note: Gauge Boson Masses
• If we wanted the particle       to have a mass, we need a term in the 

Lagrangian that looks like
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Side-note: Gauge Boson Masses
• If we wanted the particle       to have a mass, we need a term in the 

Lagrangian that looks like

17

Aμ

ℒ ⊃ m2AμAμ

• Under the transformation we introduced for this, though, the Lagrangian is 
not invariant — gauge bosons must be massless.

Aμ → Aμ −
1
g

∂μθ
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Back to the 1930s: Nuclear Beta Decays
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Example beta decay —a neutron inside a Carbon nucleus spontaneously changes to 
a proton (actually a down quark changing to an up quark), and an electron is emitted 
to conserve charge.



Conservation of Energy in Beta Decays
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Conservation of Energy in Beta Decays
• Two-body final state (nitrogen nucleus + electron) — one can show that the 

electron coming out should be “monoenergetic”

• Measurements of beta decay show that the electron has a spectrum!
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Wolfgang Pauli: “Dear Radioactive Ladies and Gentlemen”

• Pauli’s solution: a new, very weakly interacting “neutrino” comes out of beta 
decays as well, stealing some of the energy from the outgoing electron and 
producing a spectrum of electron energies.

21
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Just how “weak” is “weakly interacting”?
• Enrico Fermi, shortly after Pauli:

22

ℒFermi ⊃ GF (ψpΓψn) (ψeΓ′ ψν)
n p

e−

ν
• Also predicts processes like muon decay,

μ− ν
e−

ν

GF ≈
1

(100 GeV)2 (mp ≈ 1 GeV)
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ν
e−( ) ( )d

u GF ≈
1

(100 GeV)2

• Force carriers much heavier than the light 
fermions are mediating these interactions.
• 1983 — the two bosons, W and Z, 

associated with this interaction, were 
discovered at CERN.
• Issue: if these are really the gauge bosons 

of an SU(2) theory, they should have zero 
mass!
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Solution: The final piece of the Standard Model
• The Higgs boson and the Higgs mechanism:

24

In the early universe, the weak bosons (and the 
photon) are gauge bosons of a SU(2) x U(1) 
theory.
As the universe cools, the Higgs boson feels 
compelled to acquire a “vacuum expectation 
value” at the bottom of this “Mexican hat” 
potential.
This new minimum spontaneously breaks the 
SU(2) x U(1) symmetry, resulting in things like 
massive particles, massive gauge bosons, and 
the resulting “low energy” behavior we see today.

(early universe)

(now)
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With the Discovery of the Higgs Boson in 2012,
• The “Standard Model” has been completed.

25

• Three generations each of “up-type” quarks, 
“down-type” quarks, charged leptons, and 
neutral leptons.

• Interactions described by gauge theory of 
SU(3) x SU(2) x U(1), where the Higgs boson 
breaks it to SU(3) x U(1).

• Force carriers are the gluons (color, interact 
with quarks), photons (electromagnetism, 
interact with charged particles), and weak 
bosons (weak force, interact with all fermions).
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However, there are some 
problems…
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Dark Matter & Dark Energy
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Dan Hooper’s talk (June 3rd) 
Noah Kurinsky’s talk (July 13th)
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Overwhelming Evidence for Dark Matter over Many Scales
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Galactic rotation curves: one of the first pieces 
of evidence for dark matter.
Using Newtonian physics/Kepler’s laws, we can 
calculate what the rotational velocity of a star 
orbiting the center of its galaxy should be.
Looking out at distant galaxies and their 
outermost stars, they seem to be going faster 
than they should.
This implies some sort of “missing” or “dark” 
matter that’s pulling these stars around.
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To the best of our knowledge from these observations,
• The particles we have identified in the Standard 

Model make up a small fraction of all of the 
observed “energy density” of the universe.
• The majority of this energy density (today) is 

made up of what we call “dark energy”.
• A component even bigger than SM particles is 

“dark matter”.
• Many, many ideas exist to explain both of these 

issues, but the Standard Model, as formulated, 
has nothing to say on them.
• Worldwide efforts exist to identify and solve both 

of these mysteries.
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Neutrino Oscillations & 
Neutrino Masses

31

Karl Warburton’s talk (June 15th)
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Over several decades, evidence mounted…

32

The solar neutrino puzzle The atmospheric neutrino puzzle

Where are the electron neutrinos going?
Where are the muon neutrinos going?
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Like Dark Matter, the Standard Model does not predict neutrino masses! 
New physics (new particles and/or interactions) are necessary)
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Upcoming Experiments to better understand Neutrinos

34

• Successor to the wildly successful 
Super-Kamiokande Experiment in 
Japan.

• Uses the technique of Water 
Cerenkov neutrino detection to 
identify neutrino scattering.

• US-based precision neutrino physics 
project.

• Built on new, liquid-argon based 
technology being developed in Fermilab-
based “short-baseline” neutrino program.



The Higgs Hierarchy Problem
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Karri DiPetrillo’s talk (June 22nd) 
Don Lincoln’s talk (July 8th)
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The Higgs Boson Mass & Quantum Corrections

• Quantum field theory predicts that processes 
like these modify the Higgs boson’s mass 
from its “Lagrangian value”.
• We observe the Higgs mass to be near the 

other weak-scale particles, about 125 GeV.
• Due to the nature of these diagrams though, 

any new mass scale above the weak scale 
should pull the Higgs boson mass to be very, 
very large.
• Why then, do we see it to be so small?

36

Δm2
H ≈ −
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8π2
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Solution: Supersymmetry
• Every standard model particle has a super-symmetric partner. These superparticles 

perfectly cancel out all of these quantum corrections to the Higgs mass.
• Many theories of supersymmetry also include a stable particle that can explain the 

observed Dark Matter in the universe.
• Supersymmetric theories also may help point to a “theory of everything”, where all 

of the observed “low-energy” forces are unified into one at high energy.

37
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SUSY Searches at the LHC
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Many, many different ways to search for SUSY at colliders. ATLAS and CMS are the two, powerful, 
all-purpose detectors at the Large Hadron Collider. To date, no evidence for SUSY has been found.
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Thank you!


