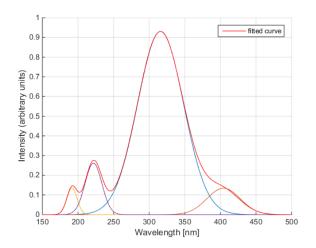
Calorimeter Subgroup Progress Report

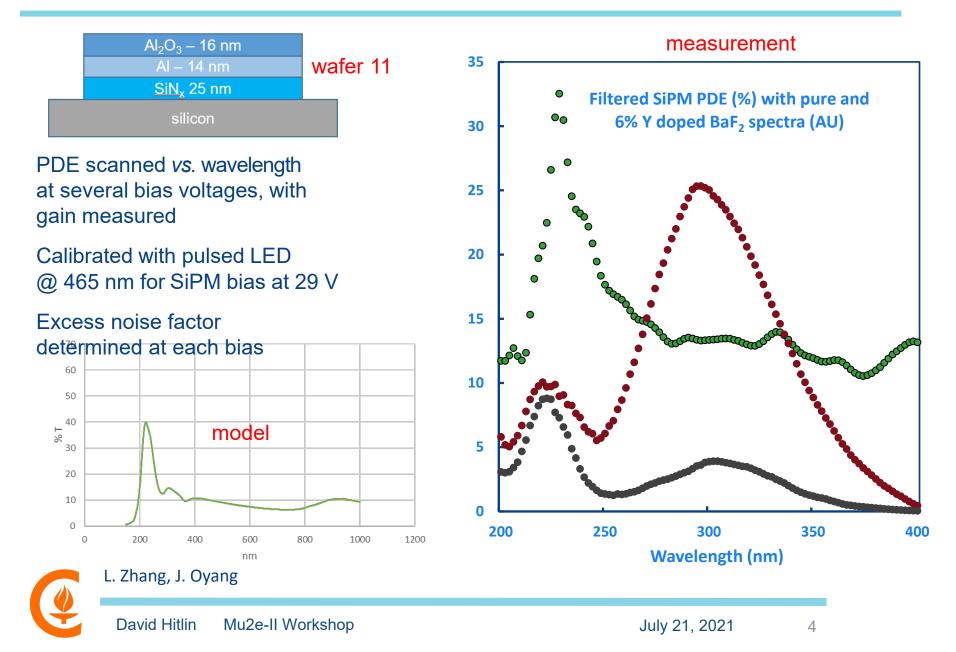
MANAA A B B B B


Mu2e-II calorimeter subgroup

- The only R&D effort that has been communicated to our subgroup over the last year or so is the work at Caltech on doped barium fluoride and on a SiPM for BaF₂ readout
- Neither of these efforts is currently funded
 - COVID-19 restrictions have impacted the work, but there has been some progress
 - We have submitted three proposals seeking funding
 - Rothenberg Innovation Initiative (Caltech) not funded
 - DOE Advanced Detector Research excellent reviews, but not funded
 - Caltech/JPL President's and Director's Research and Development Fund - pending
- We want to organize another calorimeter workshop, but we haven't detected sufficient activity to warrant one
 - Other potential avenues of inquiry include different crystals (*e.g.,* LYSO), nanoparticle wavelength shifters, microchannel PMTs, LAAPDs, …

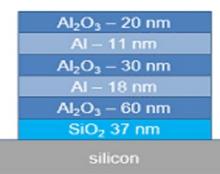
Photosensor options for BaF₂ readout

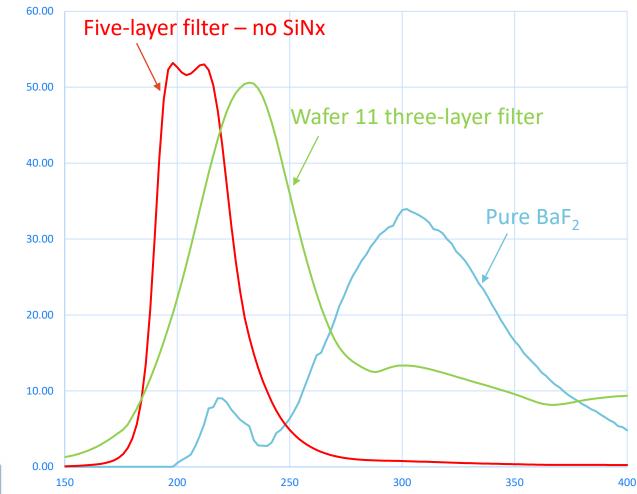
- BaF₂ is an excellent candidate for a fast, high rate, radiation-hard crystal for the Mu2e-II calorimeter, provided that one has a way of utilizing the 220 nm fast component without undue interference from the larger 320 nm slow component
 - There are actually two fast components $(\tau = 0.6 \text{ ns})$ at 195 and 220 nm and two slow components $(\tau = 630 \text{ ns})$ at 320 and 400 nm


• Our approach

Suppress the BaF₂ slow component by Y doping, as developed by Zhu *et al.,*: a major advance, although R&D remains to be done Develop a SiPM that is sensitive only to the fast component This is being done by a Caltech/JPL/FBK collaboration:

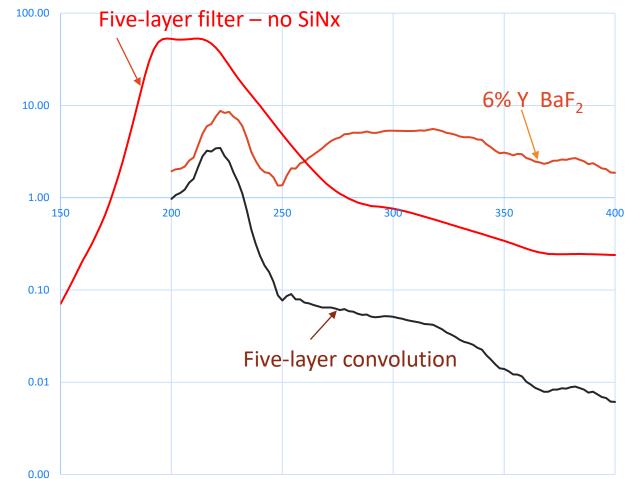
Caltech	B. Echenard, D. Hitlin, J. Oyang, J. Trevor, L. Zhang, R-Y. Zhu
JPL	J. Hennessy, M. Hoenk, A. Jewell
FBK	A. Ficorella, A. Gola, G. Paternoster




FBK SiPM with three-layer filter

Five-layer filter design – calculation

The bandpass of the five-layer filter (this design assumes complete removal of SiNx passivation) is narrower, encompasses the small 195nm fast component and has superior suppression of the slow component



July 21, 2021

5

Further improvement of fast/slow performance

- Combining
 - 6% Y-doped BaF_2 and
 - SiPM with a fivelayer filter
 provides further
 improvement in the
 ratio of fast-to-slow
 scintillation
 components
- This performance should be adequate for the Mu2e-II calorimeter and other high-rate applications

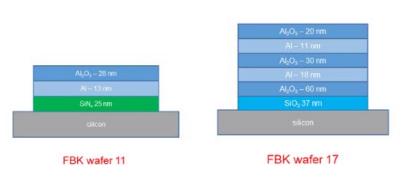
CIT/JPL/FBK SiPM - a phased approach

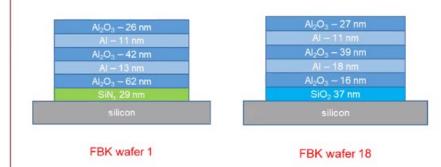
- Building on our experience with a large area APD developed with RMD, •
- DONE
 1. Build a three layer ALD filter on a 6x6 mm NUV SiPM structure, exploring different SiNx passivation layers, guard ring structures, ...
 2. Fabricate 2x3 arrays of the 6x6 mm chips, biased in series parallel configuration à la MEG and Mu2e to read out larger

Underway 3. Improve slow component rejection with more sophisticated five-layer filters –ship to Caltech for measurement/test

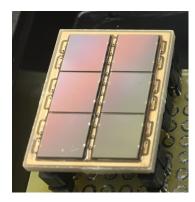
Use delta doping and backside illumination to improve PDE, the

effectiveness of the filter and timing performance First explore parameter space of MBE fab of delta-doping using diode structures of various sizes – reticles have been produced Then fab back-illuminated SiPMs with five-layer filters and

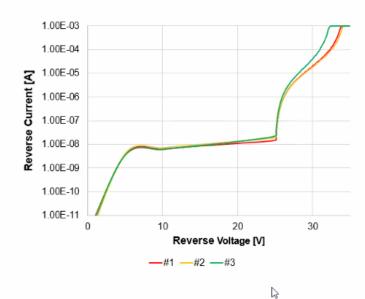

delta-doping

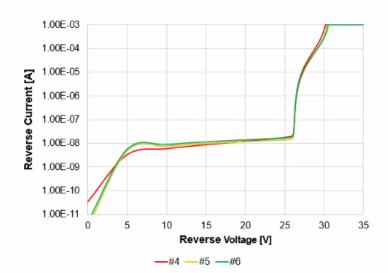


Unfunded


Estimated layer thicknesses April 2021

- JPL now has access to their ALD and MBE facilities
- We have now produced new five-layer filters on two existing wafers


- FBK wafers 1 and 18 have pre-existing passivation layers of SiN and SiO₂ respectively
- Dummy wafers B0330 and B0401B were also produced for etch testing, starting with bare silicon only
- These wafers have been sent to FBK for electrical testing, dicing into 6x6 mm chips and production of 3x2 arrays of the 6x6 mm chips
- Devices for measurement of PDE (6x6 mm) were shipped to Caltech yesterday. (3x2 arrays) for readout of large BaF₂ crystals will be shipped in a few weeks



IV curves for new wafers

IV measurement

W1

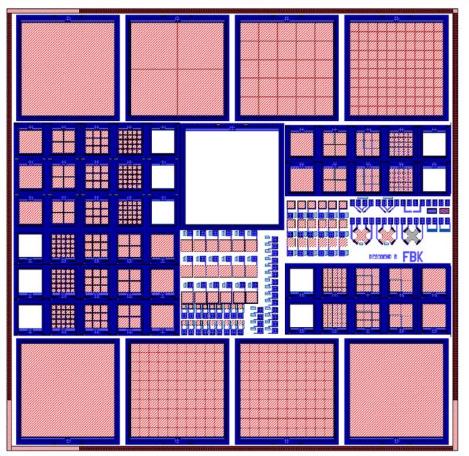
W18

Next steps – not currently funded

- We succeeded, using an SBIR grant with RMD several years ago to produce large area back-illuminated APDs with filters for the BaF₂ fast component
- SiPM structures are much more complex
 - We have adopted a two-phase approach
 - 1. Fabricate diode structures of varying sizes in order to use measurements of leakage current with many area vs. perimeter ratios to understand the effect of
 - Different etching procedures on metallization and other surface structures
 - Different MBE formulations

on device electrical performance

1. Use this information to optimize deep, delta-doped and filtered SiPM structures that can be back-illuminated



Photodiode wafers

FONDAZIONE BRUNO KESSLER

Shot composition

Splits	Layout	Layout AA/SIR Overlap							
1	L1	Overlap1	no Dist						
2	L1	Overlap2	no Dist						
3	L1	Overlap1	Dist1						
4	L1	Overlap2	Dist1						
3	L1	Overlap1	Dist2						
4	L1	Overlap2	Dist2						
5	L2	Overlap1	no Dist						
6	L2	Overlap2	no Dist						
7	L2	Overlap1	Dist1						
8	L2	Overlap2	Dist1						
7	L2	Overlap1	Dist2						
8	L2	Overlap2	Dist2						
9	L3	Overlap1	no Dist						
10	L3	Overlap2	no Dist						
11	L3	Overlap1	Dist1						
12	L3	Overlap2	Dist1						
11	L3	Overlap1	Dist2						
12	L3	Overlap2	Dist2						

Shot size ~10x10mm²

Photodiode production schedule

	_																								
Caltech Diode Gantt																									
	Apr-21		May-21			Jun-21			Jul-21			Aug-21				Sep-21				Oct-21					
	W14	W15 W	l6 W17	W18 W1	19 W20	0 W21	W22	W23	W24 V	N25 W2	6 W27	W28	W29 W3	0 W31	W32	W33	W34	W35 V	V36 V	V37 V	N38 V	V39	W40 V	/41 W	42 W43
Layout Design																									
Reticles production																									
Fabrication Batch	on Batch															Shutdown CR ?									
Parametric and Functional Testing																4	>								
Sample Delivery																									
MBE Deposition (JPL)																									
Contact opening (FBK)																									
Parametric and Functional Testing after																									
Filter deposition																									
Wafer Dicing																									

