Theory working group

Julian Heeck

Mu2e-II Snowmass22 Workshop IX

7/21/2021

Theory working group

- Julian Heeck (University of Virginia)
- Lorenzo Calibbi (Nankai University)
- Members:
 - Robert Szafron (BNL)
 - Yuichi Uesaka (Kyushu Sangyo University)
- Mailing list: mu2eii-theory@fnal.gov

Comments, questions, and members welcome!

Muon decay in orbit (DIO)

• Near endpoint, improved expression

$$\frac{1}{\Gamma_{\text{free }\mu}} \frac{\mathrm{d}\Gamma_{\text{DIO}}}{\mathrm{d}E_e} \Big|_{E_e \sim E'_{\text{end}}} = B \, E'_{\text{end}}^{5} \left(1 - \frac{E_e}{E'_{\text{end}}}\right)^{5.023}$$

[Czarnecki, Tormo, Marciano, 1106.4756; Szafron & Czarnecki, 1505.05237]

with corrected endpoint

$$E'_{\text{end}} \equiv E_{\text{end}} + \frac{\alpha}{\pi} \left(Z\alpha \right)^2 m_{\mu} \left(\frac{11}{9} - \frac{2}{3} \log \left[\frac{2m_{\mu} Z\alpha}{m_e} \right] \right)$$

[Szafron & Czarnecki, 1608.05447]

Muon decay in orbit (DIO)

• Near endpoint, improved expression

$$\frac{1}{\Gamma_{\text{free }\mu}} \frac{\mathrm{d}\Gamma_{\text{DIO}}}{\mathrm{d}E_e} \Big|_{E_e \sim E'_{\text{end}}} = B E'_{\text{end}}^{5} \left(1 - \frac{E_e}{E'_{\text{end}}}\right)^{5.023}$$

[Czarnecki, Tormo, Marciano, 1106.4756; Szafron & Czarnecki, 1505.05237]

with corrected endpoint

$$E'_{\text{end}} \equiv \underbrace{E_{\text{end}}}_{\pi} + \frac{\alpha}{\pi} \left(Z\alpha \right)^2 m_{\mu} \left(\frac{11}{9} - \frac{2}{3} \log \left[\frac{2m_{\mu} Z\alpha}{m_e} \right] \right)$$

[Szafron & Czarnecki, 1608.05447]

- Coefficient B and endpoint E_{end} obtained by solving Dirac equation for muon and electron in electric field of nucleus.

Dirac equation

• Assuming *spherical symmetry*, solve

$$\frac{d}{dr} \begin{pmatrix} g^{\kappa}(r) \\ f^{\kappa}(r) \end{pmatrix} = \begin{pmatrix} -(1+\kappa)/r & E_e + m_e + e\phi(r) \\ -E_e + m_e - e\phi(r) & -(1-\kappa)/r \end{pmatrix} \begin{pmatrix} g^{\kappa}(r) \\ f^{\kappa}(r) \end{pmatrix}$$

with nuclear Coulomb potential

$$\phi(r) = \int_0^\infty dr' r'^2 \left[\theta\left(r - r'\right) \frac{1}{r} + \theta\left(r' - r\right) \frac{1}{r'} \right] \rho\left(r'\right)$$

for a given nuclear charge distribution $\rho(r)$.

- Solved numerically by Yuichi.
- Matches known results (Al, Ti, Cu, Se, Sb, Au). [Czarnecki, Tormo, Marciano, '11]

How well do we know these charge distributions?

Mu2e-II 7/21/21

Charge distributions

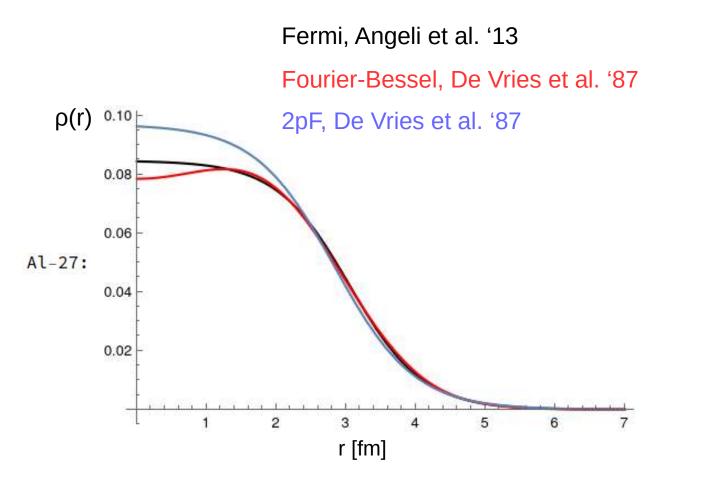
Via electron scattering or muonic atom spectroscopy.

1) Charge radii: take Fermi function

$$ho \propto \left[1 + \exp\left(\frac{\mathbf{r} - \mathbf{c}}{\mathbf{a}}\right)\right]^{-1}$$

with fixed a = 0.5 fm and fit c (or radius) to data. Up-to-date values for all isotopes of interest. [Angeli & Marinova '13] Ignores all substructure in ρ .

 Substructure: take ρ ansatz with more parameters and fit to data.

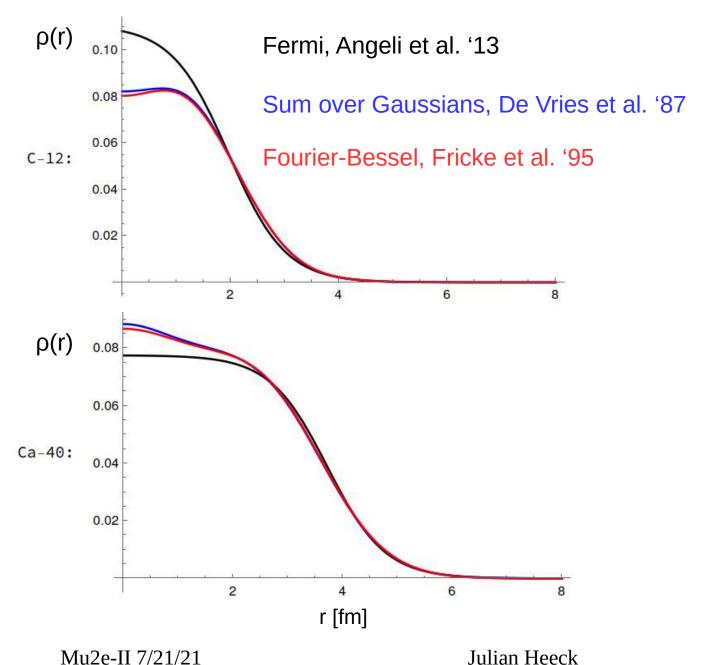

Probably more realistic shapes.

Not clear which parametrization is best.

Does not exist for all isotopes. [de Vries et al. '87, Fricke et al. '95]

Charge distributions

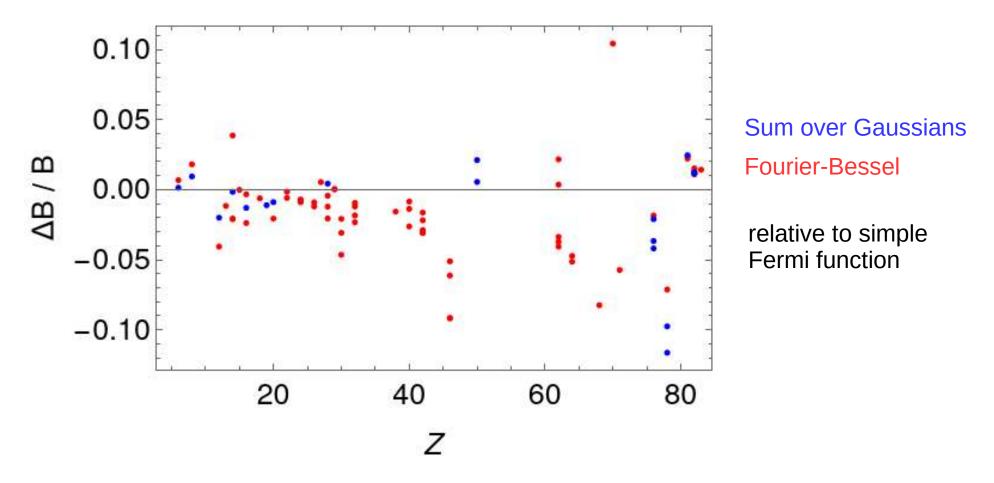
DIO



 $E_{\rm end} = 104.973 \, \text{MeV}$ $(E'_{end} = 104.970 \,\text{MeV})$ ${\sf B}=8.81 imes 10^{-17}\,{\sf MeV^{-6}}$ $\mathsf{B} = 8.91 imes 10^{-17} \, \mathsf{MeV^{-6}}$ $B = 8.96 \times 10^{-17} \, MeV^{-6}$ $B = 8.98 \times 10^{-17} \, MeV^{-6}$ [Czarnecki et al., 1106.4756]

< 2% difference

Charge distributions

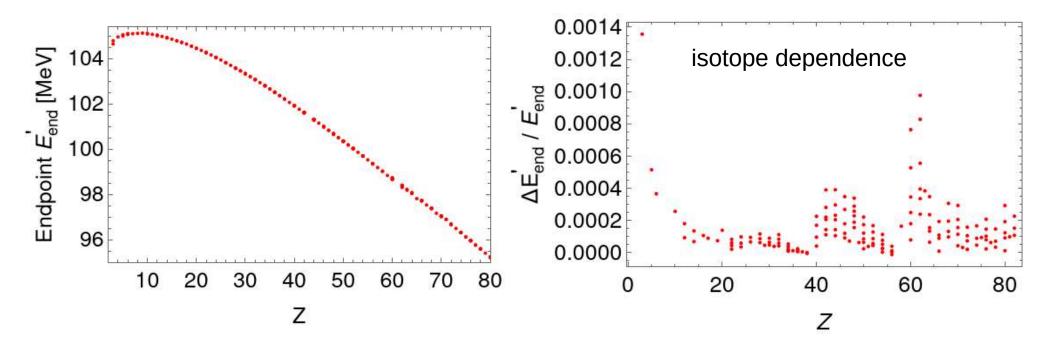


$E_{\mathrm{end}} = 105.059MeV$
$B=3.55\times10^{-18}MeV^{-6}$
$B=3.55\times10^{-18}MeV^{-6}$
${\sf B} = 3.53 imes 10^{-18} {\sf MeV^{-6}}$
$E_{\mathrm{end}} = 104.450MeV$
$B=4.01 imes10^{-16}MeV^{-6}$
$ig $ B = 4.04 $ imes$ 10 $^{-16}$ MeV $^{-6}$
$B=4.09 imes10^{-16}MeV^{-6}$

8

Mu2e-II 7/21/21

Parametrization dependence

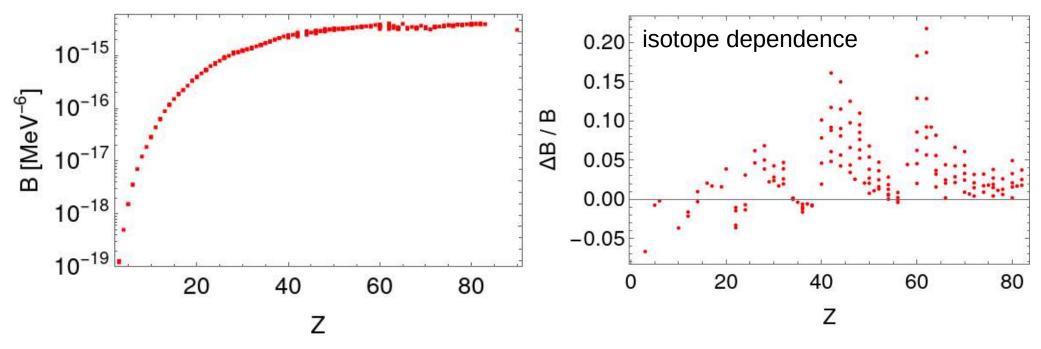


- Parametrization dependence of B: $\sim 10\%$, smaller for Z < 30.
- Fermi function surprisingly good!

Mu2e-II 7/21/21

Endpoint energy

• Using Fermi function for all 236 isotopes:

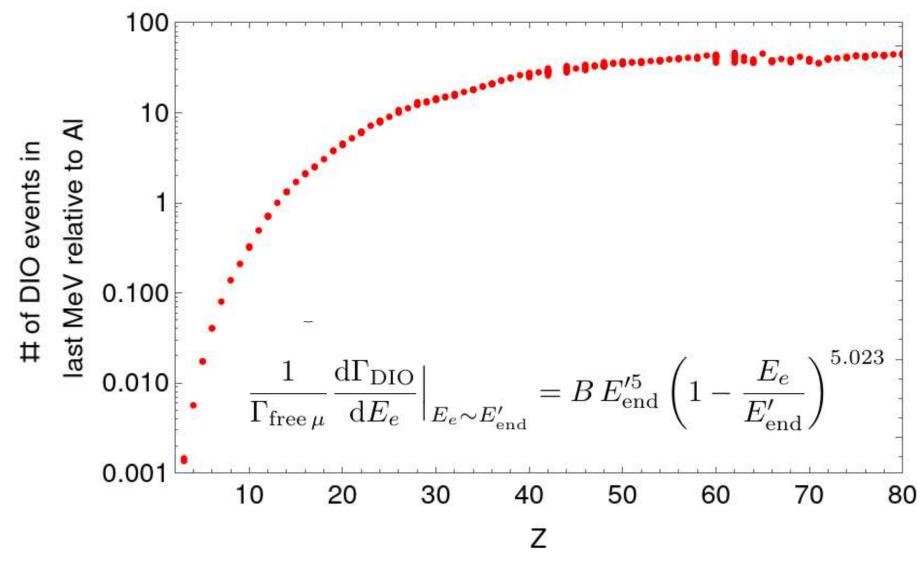


- Isotope dependence small, e.g. $\Delta E_{end}(Li) = 0.14$ MeV, but often bigger than parametrization dependence.
- At large Z: $E_{\rm end}^\prime = 108.75\,\text{MeV} 0.17\,\text{MeV}\,\text{Z}$

Mu2e-II 7/21/21

B coefficient

• Using Fermi function for all 236 isotopes:



- Isotope dependence small, e.g. ΔB/B (Li) = 7%, but often bigger than parametrization dependence.
- At large Z: $\mathsf{B} = 3 4 \times 10^{-15} \, \text{MeV}^{-6}$

Mu2e-II 7/21/21

#DIO events

• Using Fermi function for all 236 isotopes:

Mu2e-II 7/21/21

#DIO events

• Using Fermi function for all 236 isotopes:

Mu2e-II 7/21/21

Julian Heeck

Summary

- Calculated DIO spectrum near endpoint for 236 nuclei.
- Uncertainty due to charge distribution below ~10%, often smaller than isotope dependence.
- Good enough for global overview.
- Next steps:
 - Finish up DIO analysis, add last parametrizations.
 - Move on to LFV overlap integrals, which also require much more uncertain *neutron* density.
 - Maybe improve precision for select isotopes (full DIO spectrum, higher orders, deformed nucleus,...)