

Impacts of Energy Resolution on SBN **Oscillation Measurements**

LeRayah Neely-Brown

GEM Fellow: Purdue University

Supervisors: Joseph Zennamo & Fernanda Psihas

SIST/GEM: 5 Slides / 5 Minutes

16 June 2021

Short Baseline Neutrino Program and Detector

 Short Baseline Neutrino Program main goal is to measure how neutrinos change into different flavors throughout the universe

Neutrino Oscillation

- Neutrinos come in 3 Flavors: Muon, Electron, Tau
- Studies show that neutrinos can change/oscillate from one flavor to another

Short Baseline Neutrino Program and Detector

 Short Baseline Neutrino Program main goal is to measure how neutrinos change into different flavors throughout the universe

Neutrino Oscillation

- Neutrinos come in 3 Flavors: Muon, Electron, Tau
- Studies show that neutrinos can change/oscillate from one flavor to another
- Detectors a part of the SBN Program are:
 - Short-Baseline Far Detector (ICARUS T600)
 - MicroBooNF
 - Short-Baseline Near Detector (SBND)

Short Baseline Neutrino Program and Detector

- Short Baseline Neutrino Program main goal is to measure how neutrinos change into different flavors throughout the universe
- Neutrino Oscillation
 - Neutrinos come in 3 Flavors: Muon, Electron, Tau
 - Studies show that neutrinos can change/oscillate from one flavor to another
- Detectors a part of the SBN Program are:
 - Short-Baseline Far Detector (ICARUS T600)
 - MicroBooNE
 - Short-Baseline Near Detector (SBND)

SBND @ Fermilab

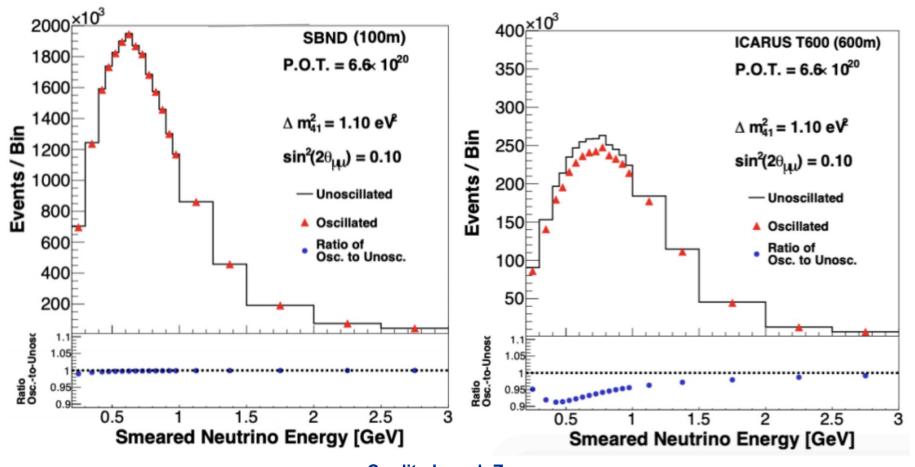
Motivation + Goal: Improving Searches (Part 1)

<u>Understanding Neutrino Oscillations with Precision Energy Measurements is my</u> <u>main goal for this summer's project</u>

Purpose:

- Other experiments have seen oscillations beyond expected
 - Meaning, could some oscillations be anomalies or be something concrete?
 - Studying oscillations can help us determine if sterile neutrinos, the potential fourth neutrino, are present

Motivation + Goals: Improving Searches (Part 2)


<u>Understanding Neutrino Oscillations with Precision Energy Measurements is my</u> <u>main goal for this summer's project</u>

Tasks This Summer:

- Analyze how energy reconstruction within SBND & ICARUS T600 can allow us to have improved searches for understanding how neutrinos oscillate and change from one flavor to another
 - Look for tiny wiggles in neutrino energy distributions

Motivation + Goals: Improving Searches (Part 2)

Credit: Joseph Zennamo

These plots show when there is a tiny wiggle occurs with the neutrinos as they pass through ICARUS (first plot) then go through MicroBooNE (second plot).

Motivation + Goals: Improving Searches (Part 2)

<u>Understanding Neutrino Oscillations with Precision Energy Measurements is my</u> <u>main goal for this summer's project</u>

Tasks This Summer:

- Analyze how energy reconstruction within SBND & ICARUS T600 can allow us to have improved searches for understanding how neutrinos oscillate and change from one flavor to another
 - Look for tiny wiggles in neutrino energy distributions
- Use simulations from detector to make fit plots/graphs to analyze how varying precise neutrino energy reconstruction impacts or improves the understanding of neutrino oscillations

First Steps to Improving Searches

- First steps are working with Common Analysis Framework (CAF) to:
 - Understand how to make, edit, and use CAFs
 - This will help prepare me to work with actual SBND and ICARUS
 T600 data in the near future
- Next Steps are using simulations from CAFs to:
 - Make fit plots
 - Construct plot of energy distribution of neutrinos from SBND and ICARUS T600

