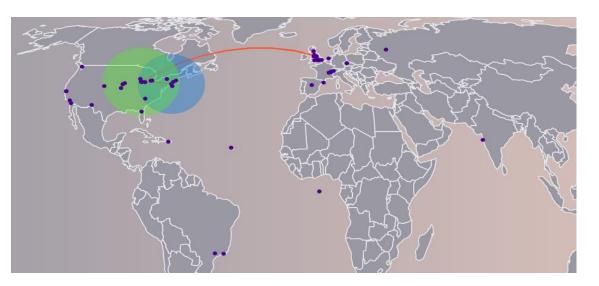
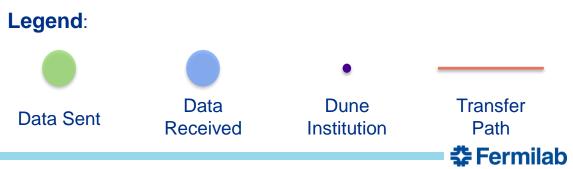
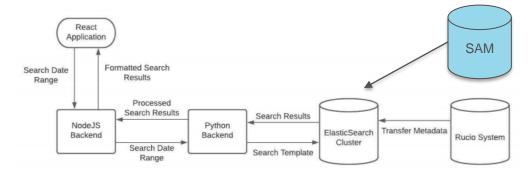


Monitoring DUNE Data Streaming Efficiency

Lisa Paton Supervisor: Steven Timm SIST 5 Minutes, 5 Slides 16 June 2021


DUNE Computing Sites


- The Deep Underground Neutrino Experient (DUNE)
 - International Collaboration
 - 36 Computing Sites
 - 15 Storage sites (already 14 Petabytes of data)
- Any job running at the sites without data storage has to **stream** that data across the network (30,000 jobs at a time expected)
- Need to measure who is running, where are they reading data from, how much data, and how fast


Transfer Map

- React App
 - Online front end
 - Access transfer data based
 on user input date ranges
 - Data collected from Rucio
 - Visualize data transfer sizes, paths, etc.
 - Bigger circle ⇒ more data
 - Made by 3 Oregon State University students

Objectives

- Collect streaming data
- Update Rucio transfer data visualization
 - Rework Python back end to include Serial Access Metadata (SAM)
 - SAM records start and end times of streaming, also file size
 - Can calculate transfer rate (file size/duration)
 - SAM records stored in elastic search
 - Incorporate frequent updates to searchable date ranges

Objectives Continued

- Analyze data
 - Compare relative speed of transfers between pairs of sites
 - benchmarking, input/output operations per second (IOPS), network traffic, etc.
 - If the transfer rates are slow, why?
 - Slow source disk
 - Slow network
 - Slow local disk
 - Asking for data slowly (supposed to be slow)
- Model data
 - Predict network and storage needs
 - Storage capacity (measured using IOPS)
 - Network traffic (measured using Mb/s)

