

Translating Analyses Into Prototype Analysis Systems

Brian O. Cruz Rodríguez
Jim Pivarski

New Perspectives 2021 August 18, 2021

brian.cruz2@upr.edu (University of Puerto Rico - Mayagüez Campus) pivarski@princeton.edu (Princeton University)

Introduction

- IRIS-HEP Fellowship program
 - Software R&D projects
- Analyze Higgs to 4 leptons decay
 - The four-leptons decay include: 4μ, 4e, and 2μ2e
 - Using CMS Open Data
 - Traditional analysis in ROOT (original)
 - Using COFFEA and Awkward-array (prototype)
- Compare the prototype and original analyses for:
 - o Time-to-insight
 - Functionality
 - Reusability

Original vs Prototype

- Original
 - Has the data as C++ objects
 - Goes event-by-event (row-wise)
- Prototype
 - Has the data as a numpy array
 - Ability to go column-wise

Original and Prototype

- ROOT files have a columnar format
 - Data is stored in a TTree class called Events
 - TTrees has TBranches
 - TBranches has "leaves"

Muon branch

```
['charge',
 'dxy',
 'dxyErr',
 'dz',
 'dzErr',
 'eta',
 'genPartIdx',
 'genPartIdxG',
 'jetIdx',
 'jetIdxG',
 'mass',
 'pfRelIso03_all',
 'pfRelIso04 all',
 'phi',
 'pt',
 'softId',
 'tightId']
```

Branches

Leaves

Prototype Tools

- Uproot
 - Python implementation of the ROOT I/O
 - Independent of the ROOT toolkit
- Awkward-array
 - Library that can manipulate complex data structures with the efficiency of Numpy arrays
- COFFEA
 - Columnar Object Framework For Effective Analysis
 - Prototype package that uses Uproot, Awkward-array and the scientific python ecosystem
 - Provides an array-based syntax for HEP Event data manipulation

Objective

 To show that the prototype translation worked, we plotted the Higgs mass histogram (shown in red) for the 3 decays

Analysis Tools

- Docker
 - Service that delivers self-sustaining software packages
 - Created a Docker container from the CMSSW_5_3_32 image
 - Download the <u>cms-opendata-analyses/HiggsExample20112012</u> Github repository with the original code
 - Downloading the <u>cms-opendata-analyses/AOD2NanoAODOutreachTool</u>
 Github repository with a tool to convert AOD to NanoAOD
 - Download the Higgs to 4 leptons AODSIM dataset sample from the <u>CERN</u> <u>Open Data Portal</u>
 - Produce the NanoAOD of the sample
- JupyterLab
 - Interface for Jupyter notebooks
 - To interactively run the prototype code to compare it with the original

Higgs to 4µ mass histogram

- Red: mass histogram from the original
- Blue: mass histogram from the prototype

Higgs to 4e mass histogram

- Red: mass histogram from the original
- Blue: mass histogram from the prototype

Higgs to 2µ2e mass histogram

- Red: mass histogram from the original
- Blue: mass histogram from the prototype

Next step

- Scale-up
- Analyze more datasets
 - o Produce the NanoAODs of all the 21 Higgs analysis samples
 - Produce the Higgs plot shown earlier

Thank you!

Any questions?

Backup Slides

Set-up

- Creating a Docker container from the CMSSW_5_3_32 image
- PS C:\Users\bocr9> <mark>docker</mark> run -it --privileged --name ihepproject --net=host --env="DISPLAY" --volume C:\Users\bocr9\shared-folder\:/home/cmsusr/shared -folder cmsopendata/cmssw_5_3_32 /bin/bash
 - Download the <u>cms-opendata-analyses/HiggsExample20112012</u> Github repository in the Docker container and compile the codes with **scram b**

```
[17:44:42] cmsusr@ www.ceshton ~/CMSSW_5_3_32/src $ git clone git://github.com/cms-opendata-analyses/HiggsExample20112012.git Cloning into 'HiggsExample20112012'...
```

Downloading the <u>cms-opendata-analyses/AOD2NanoAODOutreachTool</u> Github repository too, and compile the code as well

```
[17:46:46] cmsusr@ cms
```

Downloading the Dataset

Download the simulated Higgs to 4 leptons AODSIM sample from the <u>CERN</u>
 Open Data Portal into a Docker container

Download the AODSIM index file in the Docker container

Producing the NanoAOD

 Add the index file as input to the proper Outreach Tool python configuration file, simulation_cfg.py

```
# HiggsToZZTo4L_M-125
files = FileUtils.loadListFromFile("/home/cmsusr/CMSSW_5_3_32/src/samples/AODSIM/AODSIM_2011/CMS_MonteCarlo2011_Summer11LegDR_SMHiggsToZZTo4L_M-125_7TeV-powheg15-JHUgenV3-pythia6_AODSIM_PU_S13
_START53_LV6-v1_20000_file_index.txt")
```

Add the original EDAnalyzer, HiggsDemoAnalyzerGit, to the config file

```
# Register fileservice for output file
process.aod2nanoaod = cms.EDAnalyzer("AOD2NanoAOD", isData = cms.bool(False))
process.giteda = cms.EDAnalyzer("HiggsDemoAnalyzerGit")
process.TFileService = cms.Service(
    "TFileService", fileName=cms.string("2011MCNtuples.root"))

process.p = cms.Path(process.aod2nanoaod*process.giteda)
```

Run the config file to produce the NanoAOD

```
[19:23:47] cmsusr@www.deputco ~/CMSSW_5_3_32/src/workspace/AOD2NanoAOD/configs $ cmsRun simulation_cfg.py
```

Move the produced file to the shared folder