Analysis of Gamma Ray Emissions From Fission Product Contributors to the Antineutrino Spectrum

• C. J. Martoff, Samuel Kim, Temple University

Michael Dion, David Glasgow, Oak Ridge National Laboratory

Reactor Antineutrino Anomaly (RAA)

Name given to an apparent bump in the energy spectrum of antineutrinos from reactors, around 5 MeV energy

Reactor Neutrino¹

- From one fission, about 7 antineutrinos are produced.
- A 1 GW thermal reactor emits approximately 1E+20 antineutrinos per second
- A reactor produces over 1000 fission fragment nuclides, each of which beta decays.

Modeling the Reactor Neutrino Spectrum

Dwyer and Langford²

- Ab-initio summation method with nuclear data from ENDF/B-VII.1
- RAA: spectral bump is shown at Antineutrino energy at 5 to 7 MeV (Positron energy at 4 to 6 MeV)
- Claim: resulting from strengths of eight beta decay branches in the tabulated nuclear data.

•	93-Rb	(432.61 keV, 5.84 s)	100-Nb	(535.67 keV, 1.5 s)	140-Cs	(602.25 keV, 63.7 s)
•	95-Sr	(685.6 keV, 23.9 s)	92-Rb	(814.98 keV, 4.48 s)	96-Y	(1750.4 keV, 5.34 s)
•	142-Cs	(359.60 keV. 1.68 s)	97-Y	(1103 keV. 1.7 s)		

• The tabulated Cumulative Fission Yields of these nuclides can be checked by their gamma ray emissions!

¹Hayes and et al, 2012, Reactor Antineutrino Flux & the Anomaly, Applied Antineutrino Physics workshop

²Dwyer, Daniel A, and Thomas Langford, 2015, "Spectral Structure of Electron Antineutrinos from Nuclear Reactors", *Physical Review Letters* 114

²³⁵U Sample Irradiation at ORNL HFIR NAA Facility*

- Natural Uranium nitrate ICP calibration solution
- 252.72 nano gram
- Irradiate for 30 seconds using PT-2, HFIR*, at NAA*
- "Rabbit" transit time = 20 seconds
- 142-Cs and 97-Y have decayed away
 - Exploring alternate way to measure these
- Gamma ray emission is measured for 30 seconds using ORNL P-type high purity germanium detector

^{*}Oak Ridge National Laboratory (ORNL)

^{*}High Flux Isotope Reactor (HFIR)

^{*}Neutron Activation Analysis facility (NAA)

Expected Gamma Ray Rates

Expected net count

$$\lambda N f \varepsilon t_c \left(\frac{5.2E + 8}{10E + 10} \right)$$

Uncertainty in expected net count²

$$\frac{dc}{c} = \sqrt{\left(\frac{dN}{N}\right)^2 + \left(\frac{df}{f}\right)^2 + \left(\frac{d\lambda}{\lambda}\right)^2 + \left(\frac{d\epsilon}{\epsilon}\right)^2}$$
• f and df are the gamma ray emission probability and its uncertainty
• λ and d λ are the decay constant and its uncertainty

- Must solve Bateman equations for nuclides produced during irradiation (N)
 - Utilized RadICal¹
 - Outputs gamma rays / second emission rate from each product nuclide
- Efficiency (ε) of ORNL HPGe GEANT4 simulated
- Emission probability (f) for selected gamma ray line
- Decay constant (λ)
- C and dC are expected count and its uncertainty
- N and dN are the number of nuclides fission produced and its uncertainty

- ε and dε are the GEANT4 simulated efficiency of ORNL HPGe detector and its uncertainty.

¹Robins, J. and et al, RadICalc: a program for estimating radiation intensity of radionuclide mixtures, J Radioanal Nucl Chem (2015) 303:1955–1960

²Taylor, John Robert. 1982. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. Mill Valley: University Science Books.

Analysis of Observed Gamma Ray Peaks

Nonlinear Peak Fitting (GNUPLOT)

Analysis of Observed Gamma Ray Peaks

Nonlinear Peak Fitting (GNUPLOT)

Nonlinear fitting (gnuplot)

```
After 8 iterations the fit converged.
final sum of squares of residuals: 83.2073
rel. change during last iteration : 0
degrees of freedom
                     (FIT NDF)
                                                    : 60
rms of residuals
                     (FIT STDFIT) = sqrt(WSSR/ndf)
                                                    : 1.17762
variance of residuals (reduced chisquare) = WSSR/ndf
                                                    : 1.38679
p-value of the Chisq distribution (FIT P)
                                                    : 0.0253908
Final set of parameters
                                 Asymptotic Standard Error
= 479.356
                                 +/- 18.06
                                                 (3.768\%)
                                 +/- 0.04786
                                                 (0.007946\%)
mu1
               = 602.32
fwhm1
               = 2.89969
                                 +/- 0.1085
                                                 (3.741\%)
a1
               = 0.508822
                                 +/- 0.2612
                                                 (51.34\%)
b1
               = -260.269
                                 +/- 157.3
                                                 (60.43\%)
correlation matrix of the fit parameters:
               amp1
                     mu1
                                          b1
               1.000
amp1
mu1
               0.018 1.000
fwhm1
               0.455 -0.207 1.000
              -0.022 -0.231 0.041 1.000
b1
               0.018 0.231 -0.045 -1.000
```

Fitted net count

Gaussian (assumption)

- Amplitude (amp1, 479)
- mean (mu1, 602)
- FWHM (fwhm1, 2.9)

Uncertainty

Asymptotic standard error

- Amplitude (amp1, +/- 18)
- Mean (mu1, +/- 0.05)
- FWHM (fwhm1, +/- 0.1)

Alternate Analysis Method: Manual Peak Sum

Summation method: a peak profile is not assumed.

Net count

- Subtract gross non-sample peak count from sample peak
- Subtract continuum (\overline{B}') using trapezoid formula

$$N' = \sum_n (C' - D') - \frac{n}{2P} \left(\sum_{P_l} (C' - D') + \sum_{P_r} (C' - D') \right)$$

$$\sigma^{2\prime} = \frac{\overline{G\prime}}{t_s} + \sum_{n} \left(\frac{D\prime}{t_s} + \frac{D\prime}{t_b} \right)$$

$$+ \left(\frac{1}{t_s} \right) \left(\frac{n}{2p} \right) \overline{B\prime} + \left(\frac{n}{2p} \right)^2 \left(\sum_{P_l} \left(\frac{D\prime}{t_s} + \frac{D\prime}{t_b} \right) + \sum_{P_r} \left(\frac{D\prime}{t_s} + \frac{D\prime}{t_b} \right) \right)$$

Peak centroid: 352.8 keV

FWHM: 2.1 keV

 Peak width search range: 3xFWHM using 3 channel averaged count

Peak base width = 346.6 to 360 keV

Predicted and Measured Fission Daughter Counts

95-Sr, 140-Cs, 92-Rb and 96-Y

• Measured rates within 2σ of expected rate

93-Rb (low) and 100-Nb (high)

- Measured rates are not within 2σ expected rate
- Partial support for Dwyer & Langford proposed explanation of RAA

Follow Up

- 1) Errors in tabulated fission yields? Or in RadICalc?
- RadICal uses ENDF* VII, and Fitted and summed use ENDF VIII
- 2) Better understanding about the systematic and random errors in RadICal and analysis methods used.
- 3) Refine the calculation models
- 3) Further study is planned using more irradiations with larger samples at ORNL.

■ Expected net count ◆ Summed net count ▲ Fitted net count

^{*}Evaluated Nuclear Data File (ENDF)