Search for a Single Photon Anomalous Excess in MicroBooNE

Guanqun Ge, Columbia University On Behalf of the MicroBooNE collaboration New Perspectives, August 17th 2021

µBooNE

NEVIS LABORATORI

Overview

- Where does it all start?
- Single photon analysis flow
- Background modeling cross-check
- Sensitivity Evaluation

Where does it all start?

It started with LSND observing a 3.8 σ excess in anti- v_e charge-current quasielastic (CCQE) events in the neutrino oscillation measurement, followed by the excess in low-energy region in v_e CCQE-like events in MiniBooNE measurement.

Phys. Rev. Lett. 121, 221801 (2018)

Given that MiniBooNE is a Cherenkov detector and doesn't have the e⁻ to photon identification capability, possible interpretations include

٧e

Electron Electron neutrino shower

- Excess in e⁻
- Excess in photon

Both photon and electron produce fuzzy rings

CR:http://superb150.blogspot.com/2012/12/cherenkov-radiation-lig ht-booms.html

Guanque Ge New Perspectives 2021

Where does it all start? - MicroBooNE experiment

To resolve the MiniBooNE LEE, MicroBooNE is proposed, which is a liquid argon time projection chamber detector, and shares the same neutrino beam with MiniBooNE.

Out-of-Cryosta

Ream-Off Data

MC + Beam-Off Stat Uncertaint

uBooN

With the whole detector acting as a calorimeter, MicroBooNE has good separation power between e⁻ and photons

Where does it all start? - photon interpretation

J. Phys. G: Nucl. Part. Phys. 46 (2019) 08LT01

- MicroBooNE 1 γ search is focused on excess of photon from neutral current (NC) Δ resonance (1232MeV) production and its radiative decay ($\Delta \rightarrow \gamma + N$)
- Unfolding result of the MiniBooNE LEE under the hypothesis of increased photon from NC Δ production and decay has suggested a **flat normalization raise of NC** $\Delta \rightarrow \gamma + N$ is sufficient to reproduce the excess, which is later determined to be ~3x
- T2K has measured their limit on total NC1γ cross section (flux-averaged) which is O(x100) of the GENIE prediction

Single Photon Analysis Flow

The NC radiative decay ($\Delta \rightarrow \gamma + N$) will create two topologies in MicroBooNE detector due to the fact that neutral particles do not ionize argon and thus leave trace in the detector:

- 1 shower + 1 track (when nucleon is proton)
- 1 shower + 0 track (when nucleon is neutron)

Single Photon Analysis Flow

The analysis is developed with 5% of MicroBooNE full Run 1-5 dataset due to blind analysis policy, and the flow is as follows:

- 1. Topology Cut: require event topology to match 1 shower+1 track or 1 shower+0 track
- 2. Pre-selection Cut: remove badly reconstructed or obvious background by cutting on shower/track energy, shower/track containment etc.
- 3. Multivariable Boosted Decision Trees (BDTs) targeting different backgrounds:
 - a. 1γ1p has 5 BDTs
 - i. Cosmic rejection BDT
 - ii. v_{e} BDT
 - iii. NC π° BDT, Second Shower Veto BDT
 - iv. Other BNB BDT

b. 1γ0p has 3 BDTs:

uBooNI

- i. Cosmic BDT
- ii. NC π° BDT
- iii. Other BNB BDT

1 γ 1p after Pre-selection Cut

1y Search Final Distributions with 5% dataset

- Final distribution with 5% dataset (including LEE prediction extra 2x GENIE-predicted NC Δ radiative decay events)
- Purity of the signal has greatly improved from 0.6% after pre-selection cut to 32% at final stage in $1\gamma 1p$

uBooNE

• NC π° event comprise majority of the background in both selections

Background validation \rightarrow 2 γ Selections

- It's not surprising that NC π° is the major background in 1γ from Δ decay search:
 - $\circ~~\Delta \rightarrow \gamma$ + N has an expected branching ratio (BR) of ~0.6%
 - $\Delta \rightarrow \pi^{\circ}$ + N has an expected BR of ~99.4%
 - When one photon from π° decay is too low energy to be reconstructed or exists the detector or pair-produces very far from the vertex, $\Delta \rightarrow \pi^{\circ}$ events can mimic the 1 γ signal
- Dedicated 2γ selections focusing on 2γ 1p and 2γ 0p topologies, using the same analysis framework as 1γ selections and MicroBooN Run 1-3 dataset

Background validation - 2γ Final Distributions

- High-statistics measurement, high purity of NC π° (~60%) in both selections
- With flux and cross section uncertainty, data and MC CV agree reasonably well

uBooNE

• ~20% and ~7% data deficit observed in 2γ 1p and 2γ 0p respectively

Background validation - In-situ NC π° Correction?

- Extract normalization factors for NC π^o coherent and non-coherent events (N_{coh}, N_{non-coh})
- > Fit to $2\gamma 1p$ and $2\gamma 0p \cos(\theta_{\pi 0})$ distributions simultaneously
- > Best fit is found at (N_{coh} = 1.4, N_{non-coh} = 0.8) with χ^2 /dof= 2.73/4 and p^{value}=0.603
- > χ^2 /dof of data evaluated with GENIE central value (CV) is 6.97/6 and p^{val}=0.324
- While GENIE CV (N_{coh} = 1, N_{non-coh} = 1) sits outside the 1σ region of the data-derived uncertainty, data is consistent with MC CV given large GENIE uncertainty
- Instead of correcting GENIE prediction of NC π° , simultaneous fit of both 1γ and 2γ selections is performed to constrain background in 1γ selection

Signal Extraction

Collapsed correlation matrix

The 1 γ and 2 γ selections are highly correlated since majority of both 1 γ and 2 γ are NC π° s and that majority of the NC π° are from Δ decay

A simultaneous fit to 1γ and 2γ final selections side-by-side to **extract the scaling of branching ratio (BR) of NC** Δ **radiative decay (x_A)** is performed, which makes use of the strong correlations between 1γ and 2γ selections to

- Indirectly constrain the selected 1γ rate predictions
- Effectively reduce the systematic uncertainty in 1γ selection

Signal Extraction

The systematic uncertainty reduction in 1γ selection (for full dataset - 12.25x10²⁰ POT)

Final Sensitivity Projection

x_{\Delta}: the scaling of branching ratio (BR) of NC Δ radiative decay

SM: GENIE CV prediction ($x_A = 1$)

LEE: extra 2x GENIE-predicted NC Δ radiative events on top of GENIE CV prediction (x_{Δ} = 3)

With MicroBooNE full Run1-5 dataset:

The median significance of rejecting the LEE hypothesis (x_Δ = 3) in favor of SM hypothesis (x_Δ = 1), assuming SM is true is 2.1σ

Takeaways

- \checkmark Produced the world's highest sensitivity to neutrino-induced NC Δ radiative decay with neutrino beam energy below 1 GeV
- * Showed high potential of this analysis in probing the hypothesis of anomalous NC Δ radiative photon excess for MiniBooNE LEE interpretation
- Developed with 5% of the MicroBooNE full dataset, the 1γ part of the analysis will soon be allowed access to MicroBooNE Run1-3 data (x15 more statistics)
- Yielded the world's highest-statistics NC π° sample
 - > Data deficit in 2 γ 1p has motivated a cross section extraction for the NC π° events

µBooN

- Same framework is being explored to do coherent single photon search
- Watch out for our new result soon!

Thank you!

Backup Slides

$\mathbf{1}\gamma$ Final Distributions projected to full dataset

µBooNE

Final Sensitivity Projection

x_{\Delta}: the scaling of branching ratio (BR) of NC Δ radiative decay

SM: GENIE CV prediction ($x_A = 1$)

LEE: extra 2x GENIE-predicted NC Δ radiative events on top of GENIE CV prediction (x_{Δ} = 3)

With MicroBooNE full Run1-5 dataset:

• The median significance of rejecting SM hypothesis ($x_{\Delta} = 1$) in favor of LEE hypothesis ($x_{\Delta} = 3$), assuming LEE is true is 2.3 σ

Final Sensitivity Projection

Feldman Cousins Corrected Confidence Belt

uBooNE

With MicroBooNE full Run1-5 dataset, we expect:

- If no NC Δ radiative events are observed, the LEE hypothesis could be ruled out at >95% confidence level (C.L.)
- If SM NC ∆ radiative prediction is observed, the LEE hypothesis could be ruled out at >90% C.L.

Coherent single photon search

Guangun Ge New Perspectives 2021

- This framework is planned to be used for coherent single photon search, for which 1 (statistically more forward along the beam direction) shower, 0 track are expected.
- Of events satisfying 1_γop topology, non-negligible amount have proton tracks in truth that are not reconstructed due to low energy/unresponsive wire regions

<u>µBooN</u>

• Current efforts focusing on vetoing events with low-energy, unreconstructed proton stubs

