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Introduction

@ The neutrino flavor states |v,) (o = e, u, T) are linear superposition
of mass eigenstates [v;) (j = 1,2,3): |va) = XUy, |v), where the
asterisk denotes the complex conjugation of U,; and U,; are the
elements of the lepton mixing matrix known as PMNS
(Pontecorvo-Maki- Nakagawa-Sakita) matrix

—is
Ui U2 Ues c12c13 5 sz size” 'OCP
U Upa Upz | = | —sipc3 — crosi3s3e’®CP craco3 — spasi3snze’°CP c13523

Uri Ur2 Urs s1253 — cr2513C23€"0CP —c1253 — S12513C23€ 0 CP c13623

where, ¢jj = cos 8, sjj = sinf;; and dcp is CP violation phase.

@ The time evolution follows |v,(t)) = Xje™ "5t U3, |v;), where Ej is the
energy associated with the mass eigenstates |v;). This is a
superposition state. Therefore, we expect quantum entanglement
[1,2].

[1] M.Blasone et al. Phys.Rev.D 77 (2007) no.9, 096002

[2] M.Blasone et al. EPL 85 (2009), 50002
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@ Investigating quantum effects in neutrino oscillation can be a very
interesting issue, since in this case, quantum correlations such as
quantum coherence, which is a micro-scopic quantum effect, can be
studied in large distances even up to several hundred kilometers away.

o We identify each flavor state |v,) (o = e, u, 7) at t=0 as three qubit
states:

ve) = [1),® |0>M ®10). = [100),,
vy = |0),®]1), ®[0), =[010),,,
vr) = 10),®[0), ®|1), =]001), .
@ These type of qubit states have these three types of entanglement:
lvu)
[ve) Jvp)——————|vr)
|ve) —————— | vr) lvu)
Ive) lvu)  |vr)
Jve) |ve) ———— |vu)
(a). Separable (b). Bi-partite Entanglement in Tri-partite System Iv(ec))_Genuine Tri-partite
(Biseparable) Entanglement
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Bi-partite entanglement in two-flavor neutrino oscillations

@ The two neutrino state space H, can be seen as the two-qubit Hilbert
space H1 ® H2 spanned by {|1); ®0),,[0); ® |1),}, by means of the
unitary equivalence defined on the mass basis by |v1) = [1); ® |0),
and |vo) = |0); ® |1),. Then, observe that in this two-qubit
representation is a bipartition of the space of quantum states
available, relative to which entanglement can be considered.
Correspondingly, a neutrino state which is entangled as a two qubit
state is said to be mode entangled.

o In two-flavor (v — v5) mixing, |ve(t)) = Uee(t) |10), + Ue,(t) 01),,
where [10), and [01) , are two-qubit flavor mode states,

ve) = [ ©10), =10,
vu) = 10)e® 1), =101),.
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@ The appearance (P,) and disappearance (Py4) probabilities are:

?

Am?t
Ps = eu(t)|2:cos49+sin49+2sin29cos29cos( ZrZ >7

~ Am?t
and Py = |Uee(t)|?> = 45sin® 6 cos?  sin? ( 4”; ) . (2)

@ The density matrix for |ve(t)) can be expressed as

0 0
NOee(B)? Uee(t) Uz, (1)
Uep(8) Uze(t) | Uen(t)I?

0 0

0
p(t) = |ve(t)) (ve(t)] = 8
0

o O O O

(3)
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e Positive Partial Transpose (PPT) criterion is a condition for
determining entanglement in bi-partite system. It states that if the
partial transposition ple () = prkps(t) or p;-(‘,",s(t) = ppe.rq(t) of a
density matrix is a positive operator with all positive eigenvalues then
the system is unentangled. If the system has even one negative
eigenvalues then it is entangled [3] .

e Using PPT criterion for entanglement the eigenvalues of p7#(t) are
A1 = Py, A2 = P,, A3 = \/P4P5, and Ay = —/P4P, which shows the
state |ve(t)) is entangled since one of them is negative.

o Consequently, Negativity [4] N(p(t)) = ||pT#(t)|| — 1 = 2v/P,Pq4.

[3] P.Horodecki et al. Phys. Lett. A 232 (1997), 333
[4] Yong-Cheng. OU, et al.PhysRevA.75.062308 (2007)
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Concurrence and Tangle

@ Non-locality measures like concurrence and tangle are strong aspects
of quantum correlations [5,6,7].
@ Using the " Spin-flipped” density matrix,

p(t) = (oy ® ay)p**(t)(oy ® 0y) (4)

where o, and o, are Pauli matrices, we calculate concurrence:

C(p(t)) = [max(p1 — p2 — pi3 — 14, 0)] =20/ PaPy (5)

in which p1, ..., a are the eigenvalues of the matrix p(t)pH(t).
o Tangle:
7(p(t)) = [max(u1 — p2 — p3 — 14, 0)]* = 4P, Py.
e Linear entropy [2]:
S(pe(t)) = 1= [Tru(p*(1))]* = 4PaPa.
[5] William K. Wooters, Phys.Rev.Lett.80.2245 (1998)
[6] A.K.Alok et al.Nucl. Phys. B 909 (2016)

[7] V.coffman et al.Phys. Rev. A 61, 052306 (2000)
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@ We see that entanglement measures between e and © modes as:
= C2, = N2, =S., = 4P,P, 6
Tep = Lep = Nepy = Oep = al"d- ()

@ When P, = Py = 0.5, all measures of entanglement tend to 1 i.e,
Ney = Tep = Cepy = Sep = 1, which corresponds to maximally
entangled state.

@ This result shows that the two flavor neutrino oscillation is a bipartite
entangled system of two qubit pure states and these quantum
correlations have a direct experimental connection with physical
quantities in neutrino oscillations.
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Tri-Partite entanglement in three-flavor neutrino

oscillations

@ The density matrix of the time evolved electron neutrino flavor state

iSPeuT(t):

0 0O 0 0 0 0 0
0 0O 0 0 0 0 0
0 0O 0 0 0 0 0
0 0 0 JUe(t)? 0 Ueelt)Uz,(t) Uee(t)Uz (t) 0
0 0O 0 0 0 0 0
00 0 Ueu())02(t) 0 |Ueu(t)F  Ueu(t)05,(1) O
00 0 Uer(t)Ui(t) 0 Uer(t)Uz,(t)  |Uer(t))? 0
0 0O 0 0 0 0 0

o Biseparable states are formed in a three particle system, by
considering two out of three mode state as a single state. The
relation between entanglement measures are:

2 2
Ne(ury = Ce(ur) = Telpr) = e(ur) = 4PaPd (720/27



@ For tri-partite entanglement, criterion is known as
Coffman-Kundu-Wooters (CKW) inequality. It states that the
sum of quantum correlations between e and i, and between e and 7,
is either less than or equal to the quantum correlations between e and
pr (treating it as a single object) [4,8]: C2, + CZ. < Cg(m),

Tep + Ter < Te(ur) and Ngu + N2 < Ne2( )

uT
Bi-separable entanglement measures Results from p#7(t)
1. Concurrence equality CEQH +C3 = Cf(,”)
2. Tangle equality Tep + Ter = Te(ur)
3. Negativity inequality Ngﬂ + Nz, < Nez(u'r)

[8] V.Coffman et al. Phys.Rev.A.61.052306,(2000)
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@ There are two extra measure for genuine tri-partite entanglement
quantified by three-tangle and three-m negativity known as residual
entanglement.

@ The residual entanglement three-7 for electron neutrino flavor state

[ve(t)) s,

T = 5110/ U (0)* + 4 Deel 2| Der (1)
0en(t) /10 0) + 4] e )21l ()

+ \UeT(t)l2\/! Uer (£)1* + 4| Uee (t)[?] Uen (1) 2
|Uee(t)[* = | Uegs(£)[* — | Uer (1)]*]. (8)

_l’_

@ When transition probabilities are P,
and P,

Vet

e = 0.39602, P, , , = 0.435899,
= 0.168081, e, reaches the maximum value 0.436629.
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Residual Entanglement Tri-Partite results for ve
disappearance

Three-tangle 7¢,r = Ce2(w) — Cezu + CezT Teur = 0

Three-m Teur = %(Ng(l”) + Ni(eT) + | Teur >0

/vf(eu) —2NZ, —2N2 —2N2))

@ The residual entanglement three-tangle vanish, but the non-zero value
of three-7 result shows that the three flavor neutrino oscillations has
a genuine form of tri-partite entanglement.

o Correlations exhibited by neutrino oscillations in tri-partite system are

like the W-states which are legitimate physical resources for quantum

information tasks [9].

v

Ve vt
Genuine Tri-partite
Entanglement

[9] A.K.Jha et al., Modern Physics Letters A, Vol. 36, No. 09, 2150056 (2021),
arXiv:2004.14853v2 [hep-ph] 13/27



Quantum computer circuit to simulate bipartite

entanglement in the two flavor neutrino oscillation on the
IBMQ platform

@ A quantum computer is built from a quantum circuit containing
quantum gates to carry quantum information [10] .

o We identified that the SU(2) rotation matrix R(f) can be encoded in
the IBM quantum computer by using the universal quantum gate U3 :

® Ld iA
[ cosz —sinze
U3(®, 6. 4) = <sin‘12>e"w cosd el(M+v) (%)
@ For the two-neutrino system, oscillation probabilities are depend on
one of the parameters of U3 gate. Thus,

B [ cosf  sind _ U:ee U;u
R(0) = U3(-26,0,0) = <—5in9 cosQ) N <ULe UL,) (10

[10] C.A. Argiielles et al.Phys.Rev.Research. 1 (2019) 033176
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@ The time-evolution operation can be identified as S-gate, where
I;Z) _ Am?t
— T2E

S0)= (g ) = U100 (1)

[ X | |U3(—29,0,0) u1(t) U3(26,0,0

LX | \W
CNOT

>
2

Figure: Using the Controlled-NOT (CNOT) gate, we construct quantum
circuit for the time evolved muon flavor neutrino state in a linear
superposition of flavor basis (v, — v), in the two qubit system:

W, (t)) = Une(t)110), + O, (t) |01),,. Here, 1 and 2 represent the input
qubits first and second, respectively
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Figure: Implementation of concurrence circuit for |v,(t)) on IBMQ processor [11].

@ In order to measure concurrence, first we prepare two decouple copies
of bi-partite neutrino state |v4(t)) ® |v4(t)) in the two flavor system
(where oo = e, 1), and apply a "spin-flipped” operation o, ® o, on
one of the two copies to prepare an arbitrary global state of neutrino
in the four qubit system followed by CNOT and Hadamard gate (H) .

@ We find that the concurrence value of the time evolved flavor
neutrino oscillation can be extracted from the global state [12].

[11] I. Esteban, et al.JHEP 09 (2020)

[12] G.Romero et al.Phys.Rev.A.75.032303 (2007) ,
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- / - -
Poincare sphere representation of two-flavor neutrino

oscillations

@ The density matrix correspond to a pure state [¢) in two dimensional
Hilbert space H?2 is given by the projection p = [¢) (¢|. Its expansion
in terms of Pauli matrices o; leads to the Poincare’ sphere
construction [13]:

1

p=10) (6] = 5(1+2.5) (12)

~

where pl = p2=p>0, Trp=1= A*=h, AAi=1<= AecS?is
the unit vector on the sphere .

@ Thus, there is a one to one correspondence between pure qubit states
and points on the unit sphere S embedded in R3. This is known as
the Poincare’ sphere construction (of which the Bloch sphere is a

special case).
[13] Arvind et.al, J.Phys.A30:2417-2431,1997
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e We parameterize a one-qubit state |v¢(t)) with 6 and ¢ as:
Ve(8, ¢)) = e E1t/h(cosh |0) + sinfe™"?[1)) (13)

where E; = (p? + m?)Y/2 and E; = (p? + m3)Y/? and in the
(E2—E1)t _ Am?t
o T 2E -
@ We see that |ve(0, ¢)) is an eigenstate of an operator O with
eignvalue +1

ultra-relativistic limit ¢ =

O |ve(0, 9)) = |ve(6, 8)), (14)
where i
A . o cos26 sin20e'
0= A(0,¢).0 = <sin20ei¢ —cos20> ’ (15)

Here, & = (ox,0,,0,) and Ai(8, ¢) is a real unit vector,
(0, ) = sin26cospé; + sin20singé; + cos20é; called the Poincare’
unit vector.
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Thus a state |ve(6, ¢)) € H? is expressed in terms of a unit vector
fi(0, ) on the surface of the Poincare’ sphere. This correspondence is
one-to-one if the ranges of # and ¢ are restricted to 0 < 6 < 7 and
0< ¢ <27

The density matrix is given by

e = ( cos? e’¢sin9cos€> 1

e "®sinfcosf sin®f 2 (I +A.5), (16)

which is the same as Eq.[12].

The eigenvalues of p® are 1 and 0, therefore p€ is a rank 1 density
matrix. This maps the neutrino state |v.(t)) to the the surface of the
unit sphere in the three dimensional vector space.

A similar mapping can be done for the time evolved muon flavor
neutrino state |v,(t)).

When 6 — g then the Poincare’ sphere becomes the Bloch sphere
used in quantum optics.
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Poincare’ sphere representation of three-flavor neutrino

oscillations

e A qutrit [14] is a unit of quantum information that is realized by three

1 0 0
mutually orthogonal states: |1) = [0 ];[2)=(1];[3)=1]0
0 0 1

@ The three flavour states of a neutrino system can be written in the
qutrit basis by identifying the mass eigenstates with the qutrit basis
states of the three dimension Hilbert space 43 as

1) = lv) 512) = |v2) ;13) = |v3) (17)

o Using the PMNS matrix (Eq.(1)), we take 612 = ¢, 613 = 6 and
023 = n and assuming dcp = 0. In the ultra-relativistic limit L ~ t
(c = 1), we define & = (B3 — E1)t/h = Am3,t/2E, and
& = (Ey — E1)t/h = Am3,t/2E (where h = 1).
[14] Carlton M. Caves and Gerard J. Milburn, doi:10.1016,/50030-4018(99)00693-8,
arXiv:quant-ph/9910001v2
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@ The normalized time evolved electron neutrino flavor state |ve(t)) in
qutrit basis, parametrized by three different mixing angle 6, ¢, n and
with two arbitrary phases &1 and & can be written as

|Ve(07 ¢7 7, 617 52)> = ef§1 COSHCOqu ‘1>
+e/%2(—cosnsing — cosgsinfsinng) |2)
+(sinnsing — sinfcospcosn) |3) (18)

@ The density matrix of a state |ve(6, 9,1, &1,£2)) is

1 -
pe = |1/e(€7 ¢7£17§2)> <Ve(97¢7£17£2)| = g(l + \/gﬁ)\) (19)

[cos® B cos? ¢] [cosq&cos&e—i(&? =41 [cospcosfe’é1
(—singcosn — cospsinpsinn)] (singpsinn — cospcosh cos n)]
_ [cos¢>c059e"(§2751) (—singcosn — cos¢sin95inn)2 [(—singcosn — cos¢>sin9$inn)ei§2
| (—singpcosn — cos¢sinfsinn)] (singpsinn — cos¢cosfcosn)]
[cosqbcosee_iEl [(singsinny — cos¢cos€cosn)e_i£2 (singsinn — t:osqbcosacosn)2
(singsinn — cosgcosfcosn)] (—singcosn — cospsinfsinn)]

where n; are the components of unit vector i and ); are the
Gell-Mann matrices (j=1,...,8).
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The components of /i are defined as:

V3 V3

nj = 71’/’([)6)\]') = 7 <Ve(9a ¢’na£17§2)‘ )‘J |Ve(9’ vanaglagl» (20)

n1 = V/3coshcosg(—singcosh — singsinfsing)cos(Ex — &1)
ny = V/3coshcosg(—sinpcosn — cosgsinfsinng)sin(Ex — £1)

n3 = \ég[cos2gz$cos20 — (—singcosn — cos¢sinfsinm)?]
ng = ﬁcos@cosqﬁ(sinqﬁsinn — cos¢cosfcosn)coséy
ns = —V/3cos¢pcost(singsinn — cospcostcosn)sinéy

ne = v/3(—singcosn — cospsindsinn)(singsing — cosgcosfcosn)costs
n7 = —V/3(singcosn — cospsindsinn)(singsinn — cosgcoscosn)sinéa

1
ng = E[coszﬁcosqu + (—singcosn — cos¢sinfsiny)?
—2(sin¢sinn — cos¢pcoshcosn)?]
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Concurrence for two qutrits flavor neutrino state

@ The density matrix of the two qutrits time evolved neutrino flavor
state can be expanded uniquely as

;o1 - 1 y
prept =G0+ V3AXY) ® G0+ V3R XY

8
1 - = 7 3 /
= U@+ VXA I +V3I@ XA + 2 3 B3 @ X)) (21)

ij=1

@ The (real) expansion coefficients are given by

nj = \ftr(p‘m,)\; ® 1)
ﬁ o’
n = Ttr(p I ® Aj)

3 oo
Bij = 5"(/} Ai ® Aj) (22)



@ The entanglement measures concurrence for the two qutrits mixed
state density matrix is defined as

9
C3(paa’) — rna)({o7 2[[,[,1 — Z ILL,} (23)
i=1

where p; (with i=1,2,...,9) are the square roots of the eigenvalues of

the non-Hermitian matrix po‘a/ﬁo“"l in decreasing order, and the

spin-flipped density matrix is
5 = (03 ® 03)p** (03 ® O3) (24)

with p*o‘o‘, being the complex conjugate of p®® and Oj is the
transformation for qutrits

Os=|i 0 —il. (25)
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@ We mapped the neutrino flavor state to two and three mode states
which are like qubits. We find that two and three flavor neutrino
oscillations exhibits bipartite and tripartite entanglement, respectively.

@ In the tripartite system the three neutrino state shows the remarkable
property of having a specific form of three-way entanglement similar
to the W-state, used in quantum information theory.

@ We proposed the implications of the implementation of bipartite
entanglement in the two neutrino system on the IBM quantum
platform.

@ Poincare’ sphere constructed for two and three flavor neutrino
oscillations in qubit and qutrit basis, respectively.

o We defined two qutrit entanglement measure concurrence (Cz(p®®'))
for the time evolved two qutrit flavor neutrino state.

@ Our further investigation of these quantum studies to model neutrinos
on quantum computer is in progress.

@ Thus, neutrinos can be considered as potential quantum information

resources.
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