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Introduction

The neutrino flavor states |να〉 (α = e, µ, τ) are linear superposition
of mass eigenstates |νj〉 (j = 1, 2, 3): |να〉 = ΣjU

∗
αj |νj〉, where the

asterisk denotes the complex conjugation of Uαj and Uαj are the
elements of the lepton mixing matrix known as PMNS
(Pontecorvo-Maki- Nakagawa-Sakita) matrix

(
Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

)
=

(
c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

)
(1)

where, cij = cos θij , sij = sin θij and δCP is CP violation phase.

The time evolution follows |να(t)〉 = Σje
−iEj tU∗αj |νj〉, where Ej is the

energy associated with the mass eigenstates |νj〉. This is a
superposition state. Therefore, we expect quantum entanglement
[1,2].

[1] M.Blasone et al. Phys.Rev.D 77 (2007) no.9, 096002

[2] M.Blasone et al. EPL 85 (2009), 50002
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Investigating quantum effects in neutrino oscillation can be a very
interesting issue, since in this case, quantum correlations such as
quantum coherence, which is a micro-scopic quantum effect, can be
studied in large distances even up to several hundred kilometers away.
We identify each flavor state |να〉 (α = e, µ, τ) at t=0 as three qubit
states:

|νe〉 = |1〉e ⊗ |0〉µ ⊗ |0〉τ ≡ |100〉e ,
|νµ〉 = |0〉e ⊗ |1〉µ ⊗ |0〉τ ≡ |010〉µ ,
|ντ 〉 = |0〉e ⊗ |0〉µ ⊗ |1〉τ ≡ |001〉τ .

These type of qubit states have these three types of entanglement:
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Bi-partite entanglement in two-flavor neutrino oscillations

The two neutrino state space Hν can be seen as the two-qubit Hilbert
space H1 ⊗H2 spanned by {|1〉1 ⊗ |0〉2 , |0〉1 ⊗ |1〉2}, by means of the
unitary equivalence defined on the mass basis by |ν1〉 = |1〉1 ⊗ |0〉2
and |ν2〉 = |0〉1 ⊗ |1〉2. Then, observe that in this two-qubit
representation is a bipartition of the space of quantum states
available, relative to which entanglement can be considered.
Correspondingly, a neutrino state which is entangled as a two qubit
state is said to be mode entangled.

In two-flavor (να → νβ) mixing, |νe(t)〉 = Ũee(t) |10〉e + Ũeµ(t) |01〉µ,
where |10〉e and |01〉µ are two-qubit flavor mode states,

|νe〉 = |1〉e ⊗ |0〉µ ≡ |10〉e ,
|νµ〉 = |0〉e ⊗ |1〉µ ≡ |01〉µ .
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The appearance (Pa) and disappearance (Pd) probabilities are:

Pa = |Ũeµ(t)|2 = cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos

(
∆m2t

2E

)
,

and Pd = |Ũee(t)|2 = 4 sin2 θ cos2 θ sin2

(
∆m2t

4E

)
. (2)

The density matrix for |νe(t)〉 can be expressed as

ρeµ(t) = |νe(t)〉 〈νe(t)| =


0 0 0 0

0 |Ũee(t)|2 Ũee(t)Ũ∗eµ(t) 0

0 Ũeµ(t)Ũ∗ee(t) |Ũeµ(t)|2 0
0 0 0 0

 .

(3)
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Positive Partial Transpose (PPT) criterion is a condition for
determining entanglement in bi-partite system. It states that if the

partial transposition ρTe
pq,rs(t) = ρeµrq,ps(t) or ρ

Tµ
pq,rs(t) = ρeµps,rq(t) of a

density matrix is a positive operator with all positive eigenvalues then
the system is unentangled. If the system has even one negative
eigenvalues then it is entangled [3] .

Using PPT criterion for entanglement the eigenvalues of ρTµ(t) are
λ1 = Pd , λ2 = Pa, λ3 =

√
PdPa, and λ4 = −

√
PdPa which shows the

state |νe(t)〉 is entangled since one of them is negative.

Consequently, Negativity [4] N(ρeµ(t)) = ||ρTµ(t)|| − 1 = 2
√
PaPd .

[3] P.Horodecki et al. Phys. Lett. A 232 (1997), 333

[4] Yong-Cheng. OU, et al.PhysRevA.75.062308 (2007)
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Concurrence and Tangle

Non-locality measures like concurrence and tangle are strong aspects
of quantum correlations [5,6,7].

Using the ”Spin-flipped” density matrix,

ρ̃eµ(t) = (σy ⊗ σy )ρ∗eµ(t)(σy ⊗ σy ) (4)

where σx and σy are Pauli matrices, we calculate concurrence:

C (ρeµ(t)) ≡ [max(µ1 − µ2 − µ3 − µ4, 0)] = 2
√

PaPd (5)

in which µ1, ..., µ4 are the eigenvalues of the matrix ρeµ(t)ρ̃eµ(t).

Tangle:
τ(ρeµ(t)) ≡ [max(µ1 − µ2 − µ3 − µ4, 0)]2 = 4PaPd .

Linear entropy [2]:
S(ρeµ(t)) = 1− [Trµ(ρeµ(t))]2 = 4PaPd .

[5] William K. Wooters, Phys.Rev.Lett.80.2245 (1998)

[6] A.K.Alok et al.Nucl. Phys. B 909 (2016)

[7] V.coffman et al.Phys. Rev. A 61, 052306 (2000)
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We see that entanglement measures between e and µ modes as:

τeµ = C 2
eµ = N2

eµ = Seµ = 4PaPd . (6)

When Pa = Pd = 0.5, all measures of entanglement tend to 1 i.e,
Neµ = τeµ = Ceµ = Seµ = 1, which corresponds to maximally
entangled state.

This result shows that the two flavor neutrino oscillation is a bipartite
entangled system of two qubit pure states and these quantum
correlations have a direct experimental connection with physical
quantities in neutrino oscillations.
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Tri-Partite entanglement in three-flavor neutrino
oscillations

The density matrix of the time evolved electron neutrino flavor state
is ρeµτ (t) =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 |Ũee(t)|2 0 Ũee(t)Ũ∗eµ(t) Ũee(t)Ũ∗eτ (t) 0
0 0 0 0 0 0 0 0

0 0 0 Ũeµ(t)Ũ∗ee(t) 0 |Ũeµ(t)|2 Ũeµ(t)Ũ∗eτ (t) 0

0 0 0 Ũeτ (t)Ũ∗ee(t) 0 Ũeτ (t)Ũ∗eµ(t) |Ũeτ (t)|2 0
0 0 0 0 0 0 0 0


Biseparable states are formed in a three particle system, by
considering two out of three mode state as a single state. The
relation between entanglement measures are:

N2
e(µτ) = C 2

e(µτ) = τe(µτ) = Se(µτ) = 4PaPd (7)
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For tri-partite entanglement, criterion is known as
Coffman-Kundu-Wooters (CKW) inequality. It states that the
sum of quantum correlations between e and µ, and between e and τ ,
is either less than or equal to the quantum correlations between e and
µτ (treating it as a single object) [4,8]: C 2

eµ + C 2
eτ ≤ C 2

e(µτ),

τeµ + τeτ ≤ τe(µτ) and N2
eµ + N2

eτ ≤ N2
e(µτ).

Bi-separable entanglement measures Results from ρeµτ (t)

1. Concurrence equality C 2
eµ + C 2

eτ = C 2
e(µτ)

2. Tangle equality τeµ + τeτ = τe(µτ)

3. Negativity inequality N2
eµ + N2

eτ < N2
e(µτ)

[8] V.Coffman et al. Phys.Rev.A.61.052306,(2000)
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There are two extra measure for genuine tri-partite entanglement
quantified by three-tangle and three-π negativity known as residual
entanglement.

The residual entanglement three-π for electron neutrino flavor state
|νe(t)〉 is,

πeµτ =
4

3
[|Ũee(t)|2

√
|Ũee(t)|4 + 4|Ũee(t)|2|Ũeτ (t)|2

+ |Ũeµ(t)|2
√
|Ũeµ(t)|4 + 4|Ũee(t)|2|Ũeτ (t)|2

+ |Ũeτ (t)|2
√
|Ũeτ (t)|4 + 4|Ũee(t)|2|Ũeµ(t)|2

− |Ũee(t)|4 − |Ũeµ(t)|4 − |Ũeτ (t)|4]. (8)

When transition probabilities are Pνe→e = 0.39602, Pνe→µ = 0.435899,
and Pνe→τ = 0.168081, πeµτ reaches the maximum value 0.436629.
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Residual Entanglement Tri-Partite results for νe
disappearance

Three-tangle τeµτ = C 2
e(µτ) − C 2

eµ + C 2
eτ τeµτ = 0

Three-π πeµτ = 1
3 (N2

e(µτ) + N2
µ(eτ) +

N2
τ(eµ) − 2N2

eµ − 2N2
eτ − 2N2

µτ )

πeµτ > 0

The residual entanglement three-tangle vanish, but the non-zero value
of three-π result shows that the three flavor neutrino oscillations has
a genuine form of tri-partite entanglement.
Correlations exhibited by neutrino oscillations in tri-partite system are
like the W-states which are legitimate physical resources for quantum
information tasks [9].

[9] A.K.Jha et al., Modern Physics Letters A, Vol. 36, No. 09, 2150056 (2021),

arXiv:2004.14853v2 [hep-ph] 13/27



Quantum computer circuit to simulate bipartite
entanglement in the two flavor neutrino oscillation on the
IBMQ platform

A quantum computer is built from a quantum circuit containing
quantum gates to carry quantum information [10] .

We identified that the SU(2) rotation matrix R(θ) can be encoded in
the IBM quantum computer by using the universal quantum gate U3 :

U3(Φ, φ, λ) =

(
cos Φ

2 −sinΦ
2 e

iλ

sinΦ
2 e

iψ cos Φ
2 e

i(λ+ψ)

)
(9)

For the two-neutrino system, oscillation probabilities are depend on
one of the parameters of U3 gate. Thus,

R(θ) = U3(−2θ, 0, 0) =

(
cosθ sinθ
−sinθ cosθ

)
≡
(
Ũee Ũeµ

Ũµe Ũµµ

)
(10)

[10] C.A. Argüelles et al.Phys.Rev.Research. 1 (2019) 033176
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The time-evolution operation can be identified as S-gate, where
ψ = ∆m2t

2E

S(ψ) =

(
1 0
0 e iψ

)
= U1(t). (11)

Figure: Using the Controlled-NOT (CNOT) gate, we construct quantum
circuit for the time evolved muon flavor neutrino state in a linear
superposition of flavor basis (νµ → νe), in the two qubit system:

|νµ(t)〉 = Ũµe(t) |10〉e + Ũµµ(t) |01〉µ. Here, 1 and 2 represent the input
qubits first and second, respectively
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Figure: Implementation of concurrence circuit for |νµ(t)〉 on IBMQ processor [11].

In order to measure concurrence, first we prepare two decouple copies
of bi-partite neutrino state |να(t)〉 ⊗ |να(t)〉 in the two flavor system
(where α = e, µ), and apply a ”spin-flipped” operation σy ⊗ σy on
one of the two copies to prepare an arbitrary global state of neutrino
in the four qubit system followed by CNOT and Hadamard gate (H) .
We find that the concurrence value of the time evolved flavor
neutrino oscillation can be extracted from the global state [12].

[11] I. Esteban, et al.JHEP 09 (2020)

[12] G.Romero et al.Phys.Rev.A.75.032303 (2007)
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Figure: The concurrence varies with time at the IBMQ computer for an initial
muon neutrino flavor state. The concurrence information encoded in the
coefficients of four qubit global state basis are shown through Histogram
(probabilities in percentage) plot.
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Poincare
′

sphere representation of two-flavor neutrino
oscillations

The density matrix correspond to a pure state |ψ〉 in two dimensional
Hilbert space H2 is given by the projection ρ = |ψ〉 〈ψ|. Its expansion
in terms of Pauli matrices σj leads to the Poincare ′ sphere
construction [13]:

ρ = |ψ〉 〈ψ| =
1

2
(1 + n̂.~σ) (12)

where ρ† = ρ2 = ρ ≥ 0, Trρ = 1 =⇒ n̂∗ = n̂, n̂.n̂ = 1 ⇐⇒ n̂ ∈ S2 is
the unit vector on the sphere .

Thus, there is a one to one correspondence between pure qubit states
and points on the unit sphere S2 embedded in R3. This is known as
the Poincare ′ sphere construction (of which the Bloch sphere is a
special case).

[13] Arvind et.al, J.Phys.A30:2417-2431,1997
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We parameterize a one-qubit state |νe(t)〉 with θ and φ as:

|νe(θ, φ)〉 = e−iE1t/h(cosθ |0〉+ sinθe−iφ |1〉) (13)

where E1 = (p2 + m2
1)1/2 and E2 = (p2 + m2

2)1/2 and in the

ultra-relativistic limit φ = (E2−E1)t
~ ≡ ∆m2t

2E .

We see that |νe(θ, φ)〉 is an eigenstate of an operator Ô with
eignvalue +1

Ô |νe(θ, φ)〉 = |νe(θ, φ)〉 , (14)

where

Ô = n̂(θ, φ).~σ =

(
cos2θ sin2θe iφ

sin2θe−iφ −cos2θ

)
. (15)

Here, ~σ = (σx , σy , σz) and n̂(θ, φ) is a real unit vector,
n̂(θ, φ) = sin2θcosφê1 + sin2θsinφê2 + cos2θê3 called the Poincare ′

unit vector.
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Thus a state |νe(θ, φ)〉 ∈ H2 is expressed in terms of a unit vector
n̂(θ, φ) on the surface of the Poincare ′ sphere. This correspondence is
one-to-one if the ranges of θ and φ are restricted to 0 ≤ θ ≤ π and
0 ≤ φ < 2π.

The density matrix is given by

ρe =

(
cos2θ e iφsinθcosθ

e−iφsinθcosθ sin2θ

)
=

1

2
(I + n̂.~σ), (16)

which is the same as Eq.[12].

The eigenvalues of ρe are 1 and 0, therefore ρe is a rank 1 density
matrix. This maps the neutrino state |νe(t)〉 to the the surface of the
unit sphere in the three dimensional vector space.

A similar mapping can be done for the time evolved muon flavor
neutrino state |νµ(t)〉.
When θ → θ

2 then the Poincare ′ sphere becomes the Bloch sphere
used in quantum optics.
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Poincare ′ sphere representation of three-flavor neutrino
oscillations

A qutrit [14] is a unit of quantum information that is realized by three

mutually orthogonal states: |1〉 =

1
0
0

; |2〉 =

0
1
0

; |3〉 =

0
0
1

.

The three flavour states of a neutrino system can be written in the
qutrit basis by identifying the mass eigenstates with the qutrit basis
states of the three dimension Hilbert space H3 as

|1〉 = |ν1〉 ; |2〉 = |ν2〉 ; |3〉 = |ν3〉 (17)

Using the PMNS matrix (Eq.(1)), we take θ12 = φ, θ13 = θ and
θ23 = η and assuming δCP = 0. In the ultra-relativistic limit L ≈ t
(c = 1), we define ξ1 = (E3 − E1)t/~ = ∆m2

31t/2E , and
ξ2 = (E2 − E1)t/~ = ∆m2

21t/2E (where ~ = 1).

[14] Carlton M. Caves and Gerard J. Milburn, doi:10.1016/S0030-4018(99)00693-8,

arXiv:quant-ph/9910001v2
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The normalized time evolved electron neutrino flavor state |νe(t)〉 in
qutrit basis, parametrized by three different mixing angle θ, φ, η and
with two arbitrary phases ξ1 and ξ2 can be written as

|νe(θ, φ, η, ξ1, ξ2)〉 = e iξ1cosθcosφ |1〉
+e iξ2(−cosηsinφ− cosφsinθsinη) |2〉

+(sinηsinφ− sinθcosφcosη) |3〉 (18)

The density matrix of a state |νe(θ, φ, η, ξ1, ξ2)〉 is

ρe = |νe(θ, φ, ξ1, ξ2)〉 〈νe(θ, φ, ξ1, ξ2)| =
1

3
(1 +

√
3n̂.~λ) (19)

=


[cos2θcos2φ] [cosφcosθe−i(ξ2−ξ1) [cosφcosθe iξ1

(−sinφcosη − cosφsinφsinη)] (sinφsinη − cosφcosθ cos η)]

[cosφcosθe i(ξ2−ξ1) (−sinφcosη − cosφsinθsinη)2 [(−sinφcosη − cosφsinθsinη)e iξ2

(−sinφcosη − cosφsinθsinη)] (sinφsinη − cosφcosθcosη)]

[cosφcosθe−iξ1 [(sinφsinη − cosφcosθcosη)e−iξ2 (sinφsinη − cosφcosθcosη)2

(sinφsinη − cosφcosθcosη)] (−sinφcosη − cosφsinθsinη)]



where nj are the components of unit vector n̂ and λj are the
Gell-Mann matrices (j=1,...,8).
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The components of n̂ are defined as:

nj =

√
3

2
tr(ρeλj) =

√
3

2
〈νe(θ, φ, η, ξ1, ξ2)|λj |νe(θ, φ, η, ξ1, ξ1)〉 (20)

where,

n1 =
√

3cosθcosφ(−sinφcosθ − sinφsinθsinη)cos(ξ2 − ξ1)

n2 =
√

3cosθcosφ(−sinφcosη − cosφsinθsinη)sin(ξ2 − ξ1)

n3 =

√
3

2
[cos2φcos2θ − (−sinφcosη − cosφsinθsinη)2]

n4 =
√

3cosθcosφ(sinφsinη − cosφcosθcosη)cosξ1

n5 = −
√

3cosφcosθ(sinφsinη − cosφcosθcosη)sinξ1

n6 =
√

3(−sinφcosη − cosφsinθsinη)(sinφsinη − cosφcosθcosη)cosξ2

n7 = −
√

3(sinφcosη − cosφsinθsinη)(sinφsinη − cosφcosθcosη)sinξ2

n8 =
1

2
[cos2θcos2φ+ (−sinφcosη − cosφsinθsinη)2

−2(sinφsinη − cosφcosθcosη)2]
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Concurrence for two qutrits flavor neutrino state

The density matrix of the two qutrits time evolved neutrino flavor
state can be expanded uniquely as

ραα
′

= ρα ⊗ ρα′ = (
1

3
(I +

√
3n̂.~λα)⊗ (

1

3
(I +

√
3n̂′.~λα

′
)

=
1

9
(I ⊗ I +

√
3~λα.n̂ ⊗ I +

√
3I ⊗ ~λα′ .n̂′ + 3

2

8∑
i ,j=1

βijλ
α
i ⊗ λα

′
j ) (21)

The (real) expansion coefficients are given by

ni =

√
3

2
tr(ραα

′
λi ⊗ I )

n′j =

√
3

2
tr(ραα

′
I ⊗ λj)

βij =
3

2
tr(ραα

′
λi ⊗ λj) (22)
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The entanglement measures concurrence for the two qutrits mixed
state density matrix is defined as

C3(ραα
′
) = max{0, 2µ1 −

9∑
i=1

µi} (23)

where µi (with i=1,2,...,9) are the square roots of the eigenvalues of
the non-Hermitian matrix ραα

′
ρ̃αα

′
in decreasing order, and the

spin-flipped density matrix is

ρ̃αα
′

= (O3 ⊗ O3)ρ∗αα
′
(O3 ⊗ O3) (24)

with ρ∗αα
′

being the complex conjugate of ραα
′

and O3 is the
transformation for qutrits

O3 =

 0 −i i
i 0 −i
−i i 0

 . (25)
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Summary

We mapped the neutrino flavor state to two and three mode states
which are like qubits. We find that two and three flavor neutrino
oscillations exhibits bipartite and tripartite entanglement, respectively.
In the tripartite system the three neutrino state shows the remarkable
property of having a specific form of three-way entanglement similar
to the W-state, used in quantum information theory.
We proposed the implications of the implementation of bipartite
entanglement in the two neutrino system on the IBM quantum
platform.
Poincare ′ sphere constructed for two and three flavor neutrino
oscillations in qubit and qutrit basis, respectively.
We defined two qutrit entanglement measure concurrence (C3(ραα

′
))

for the time evolved two qutrit flavor neutrino state.
Our further investigation of these quantum studies to model neutrinos
on quantum computer is in progress.
Thus, neutrinos can be considered as potential quantum information
resources.
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Thank You
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