Ionization Laser Calibration System for DUNE Darcy Newmark - Los Alamos National Laboratory

On behalf of the DUNE collaboration

New Perspectives Conference, August 17th 2021

Deep Underground Neutrino Experiment (DUNE)

Deep Underground Neutrino Experiment

- OUNE consists of a near and far detector and an intense muon neutrino beam from Fermilab
- Next generation long-baseline experiment
- Construction will start in 2024 and neutrino data taking expected in late 2020s

Physics Goals:

- Output Description Of the Understand neutrino mass hierarchy
- Measure charge-parity violating phase (δ_{cp})
- Supernova neutrino burst searches and proton decay
- Other Beyond Standard Model physics

Far Detector at SURF

Liquid Argon Time Projection Chamber (LArTPC)

https://www.youtube.com/watch?v=R5G1_hW0ZUA

Challenges in Calibrating DUNE Understanding the response of the detector is important to achieve the needed energy scale and resolution

- GeV-scale oscillation physics: energy scale uncertainty
 < 2% for leptons and < 5% for hadrons
- MeV-scale low E physics (e.g. supernovae, solar): energy resolutions ~20-30%
- Challenge due to huge size
- Segmented detector: 4 drift volumes, many thousands of channels/wires etc.
- Low cosmic ray muon rates due to deep underground location

Calibration Systems

- Three calibration systems planned for DUNE ionization laser system is the primary one
- Laser calibration system will create straight and well-defined ionization tracks for calibration
- Independent fine grained measurement of detector parameters
 - eg: drift velocity and electric field distortions
- Can help diagnose detector issues such as anode/cathode tilts

Laser Ionization of LAr

- (a) 266nm (equivalent to $E\gamma = 4.67 \text{ eV}$) laser light ionizes LAr through 2photon excitation followed by singlephoton ionization
- Electron yield goes with square of photon intensity (in typical regime)

Laser Ionization System Overview

- 1. Class IV laser
 - High intensity (60 mJ) UV laser
- 2. Optical bench
 - Modulate intensity and remove lower harmonics (eg. visible and infrared)
- 3. Periscope
 - Direct and rotate laser beam into LAr detector

Laser Ionization System Overview

- 1. Class IV laser
 - High intensity (60 mJ) UV laser
- 2. Optical bench
 - Modulate intensity and remove lower harmonics (eg. visible and infrared)
- 3. Periscope
 - Direct and rotate laser beam into LAr detector

Laser and Optical Bencl	
Component	Purpose
Surelite I10 Nd:YAG class IV Laser	Emits beam of the second secon
Low power visible laser	For alignmen
Beam splitter mirrors	Separate 266 other frequer
Dual band mirror	Transfer both 532 nm light
Attenuator	Control laser linear polariz
Iris	Reduce bear

nt

- 6 nm light from ncies
- h 266 nm light and
- r energy and rotate zation of beam
- m diameter

Optical Bench at LANL

Optical Bench at LANL

Preliminary Results and Next Steps for Optical Bench

- Characterized first laser, currently testing second laser
- Output Characterized other optical components such as attenuator, mirrors, etc.
- Isolated pure beam of 266nm light
- Over Moving to vertical setup towards a more compact design

Laser Ionization System Overview

- 1. Class IV laser
 - High intensity (60 mJ) UV laser
- 2. Optical bench
 - Modulate intensity and remove lower harmonics (eg. visible and infrared)
- 3. Periscope
 - Direct and rotate laser beam into LAr detector

Optical Feedthrough and Periscope

Two periscope designs to maximize coverage of the detector

- Rotary stage 2

 - Rotary
- One for the central region (penetrates the TPC top field cage and includes a retraction device for safety)
- One for the end-wall region (send) light from outside the field cage using a dual rotary motion)

Periscope designs final, procurement and fabrication ongoing at LANL and LIP (Portugal)

Leak Testing

- Periscope includes a number of seals to the cryostat which need to be tested for leak tightness
- Helium leak testing of components (e.g. rotary stages, flange view ports) ongoing at LANL and LIP (Portugal)
- Leak rate specification for DUNE/ ProtoDUNE is 10⁻⁶ mbar·l/s for the whole cryostat and 10⁻⁸ mbar·l/s for local leaks
 - RNN-600 rotary stage is within range; leaks on the order of 10⁻⁹ mbar·l/s
 - MDC viewport flanges are both within range; leaks on from 10^{-9} to 10^{-10} mbar·l/s

Summary and Next Steps

- parameters to understand + diagnose detector behavior
- Testing + finalizing design of optical components and periscope feed through
- Will soon be testing laser, optical bench, and periscope on cryogenic test stand at LANL
- Two full prototype laser systems will be built and installed in DUNE's 419-ton (active) Prototype detector (ProtoDUNE) at CERN in early 2022

• Developing laser ionization calibration system for fine grained measurements of detector

Darcy Newmark I New Perspectives 2021

Thank you for listening!

