What is SQMS?

Superconducting Quantum Materials and Systems Center

A DOE National Quantum Information Science Research Center

20 Institutions
>275 Collaborators

Tasked to produce dramatic advancements in quantum technologies for computing and sensing and to build the first quantum computer at Fermilab
How Do We Realize a Quantum Computer?
Basics of Quantum Computing

Utilizes **qubits**: basic unit of quantum information \rightarrow Two (energy) level system

Superposition

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Diagram showing the superposition state $|\psi\rangle$ on the Bloch sphere with angles θ and ϕ. The state vector is represented as a vector on the surface of the sphere, with $|0\rangle$ and $|1\rangle$ at the poles.
Phenomena give a quantum computer the potential to provide computational capacity for dramatic speedups in several high impact areas:

- Simulating molecule dynamics & particle collisions, modelling financial markets
Promising Way of Realizing a Qubit: Superconducting Qubits

1. Resonators (cavities)

- 2D
- 3D

- Rigetti 8-qubit processor
- Fermilab SRF resonators

Promising Way of Realizing a Qubit: Superconducting Qubits

1. Resonators (cavities)

2D

3D

Rigetti 8-qubit processor

Fermilab SRF resonators

2. LC circuit with Josephson junction

“Transmon” qubits

Need long quantum coherence of superpositions for both resonator and JJ

→ Need a qubit that you can manipulate and not confuse with other states
Fermilab SRF Resonators in Quantum Regime for 3D: Highest Coherence Quantum Resonators Ever Demonstrated

- Technology originally developed for particle accelerators
- Demonstrated 2 s of coherence
- Excellent starting point for SQMS

SQMS Technology Thrust: How Do We Test and Improve Our Qubits?
Focus Area: Materials

• Decoherence comes from materials used to fabricate qubits/resonators
 – Loss tangent, adsorbates, TLS,…

• **Goal:** Understand and mitigate the key mechanisms of decoherence to improve coherence times

• Utilizing material science techniques to study possible origins of loss
 – TEM, SEM, SIMS, XPS, XRD, PPMS, APT, EELS, AFM, …
Test-Bed Devices for mK Characterization of Materials

• Developing new devices to test RF performance of materials in quantum regime
 – New geometries
 – Frequency tunable cavities

• Connecting RF performance to material differences will drive the optimization of qubit fab for longer coherence times
Focus Area: Devices

Goal: Develop methods for 2D and 3D superconducting device performance testing, benchmarking, integration, and quantum controls

- Incorporating Rigetti transmons into 3-D SRF cavities
- Initial results are record-breaking for the photon lifetimes
Enabling Testing at Ultra-Low Temperatures

• Quantum measurements require minimal thermal noise
 – Drives decoherence

• **Dilution refrigerator**
 – Cools to ~20 mK via conduction

• Complex RF equipment

• SQMS plans to make a record size DR at FNAL!
SQMS Science Thrust:
What Can we Do with These Cavities and Qubits in the Quantum Regime?
Focus Area: Algorithms, Simulations, and Benchmarking

Goal: Investigate and develop quantum algorithms and simulations enabled by the groundbreaking SQMS 3D and 2D prototypes through co-design principles.

Qubits considered for a D4 gauge field theory test simulation on Rigetti hardware.
Focus Area: Physics and Sensing

Goal: Exploit the center technological advancements for fundamental physics

DarkSRF experiment: A dark photon search

Orders of magnitude in sensitivity reach improvement via the SQMS advancements

Cavity and Nb$_3$Sn materials advancements for axion searches
DarkSRF: The Search for Dark Photons

- Looking for BSM physics: dark photons
- “Light shining through wall” experiment
- SRF cavities will offer many orders of magnitude improvement in sensitivity

Axion Detection with SRF Cavities

• Searching for cold dark matter candidates: axions
• Designing and manufacturing SRF resonators capable of allowing high-Q in multi-Tesla fields for axion detection.
 – Utilizing Nb$_3$Sn coated SRF cavities
• Currently setting up a proof-of-principle experiment at Fermilab and a second one in collaboration with INFN

New cavity shape optimized for low flux losses
Conclusion

- Exciting time to be a part of such a world-wide effort in the field of QIS
- SQMS has the potential of making dramatic advancements in many thrusts in the QIS field:
 - Superconducting qubits and sensors
 - Materials
 - Algorithms
 - Quantum communication
 - Hardware development
 - Cryogenics
 - RF design and engineering
- We look forward to bringing the first SRF quantum computer to life in the next few years!

Thank you to Anna Grassellino for providing many of the slides in this talk
Thank You for Your Attention