Maximizing NOvA's Sensitivity to Sterile Neutrinos using Covariance Matrices

New Perspectives — August 19th, 2021

Outline

- Neutrino Oscillations
- NOvA Basics
- How NOvA Can Search for Sterile Neutrinos
- How Covariance Matrices Help Us

Neutrino Oscillations

Flavor and Mass

• Neutrinos of definite flavor do not have definite mass, and instead are a superposition of states with masses m_i

Neutrino Oscillations

3 Flavor Paradigm

- Defining $\Delta m_{jk}^2 \equiv m_j^2 - m_k^2$, the probability of detecting a ν_β from a ν_α source is

$$P\left(\nu_{\alpha} \to \nu_{\beta}\right) = \sum_{j,k} U_{\beta j}^{\dagger} U_{\alpha j} U_{\beta k} U_{\alpha k}^{\dagger} e^{i\Delta m_{jk}^2 \frac{Lc^3}{2E\hbar}}$$

• If we assume there are only 3 flavors of neutrinos, the matrix U can be parameterized as

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Where $s_{jk} = \sin \theta_{jk}$ and $c_{jk} = \cos \theta_{jk}$ and we have ignored the Majorana phases (which are inconsequential to oscillations)

Neutrino Oscillations

Why Oscillations

- Why do we talk about neutrino "oscillations?
- Because $P\left(\nu_{\alpha} \to \nu_{\beta}\right)$ can be expressed in terms of sines and cosines of L/E, where L is the distance from the detector and E is the neutrino energy
- The mass-squared splittings determine the frequency
- The angles θ_{jk} determine the amplitude

NOVA

What is NOvA?

- NOvA is a long baseline neutrino oscillation experiment based at Fermilab
- The primary goal is to measure $\nu_e/\bar{\nu}_e$ appearance and $\nu_\mu/\bar{\nu}_\mu$ disappearance in the NuMI Beam
- This is done by looking for charged current interactions where the neutrino leaves behind a charged lepton of the corresponding flavor

NOVA

The Detectors

- NOvA has two liquid scintillating detectors 14.6 mrad off the NuMI beam axis
- The Near Detector (ND) and Far Detector (FD) are located 1 and 810 km from the NuMI target respectively

- The ND is typically used for predicting FD spectra
- To this end the two detectors are made to be functionally identical so most systematic uncertainties cancel

Sterile Neutrinos A Fourth Neutrino?

- In the 3 flavor model there are ν_e , ν_μ , and ν_τ neutrinos, all of which interact via the weak force
- However, there is evidence which suggests a fourth neutrino, ν_{s}
- Measurements from LEP mean this neutrino must not interact
- We can supplement our ν_{μ} disappearance search with a NC deficit search to see if we are "missing" neutrinos
- Introducing ν_s requires 3 new angles θ_{j4} , 2 new CP-violating phases δ_{24} and δ_{14} , and 1 new mass m_4

Sterile Neutrinos

Sterile Neutrinos in NOvA

- For certain values of Δm_{41}^2 we can see oscillations to sterile in the ND
- We want to use the ND as part of our sample
- To access the ND events we need to change our mode of analysis

How to handle correlations

- While we cannot use the ND as a reference for the FD, we do know that the uncertainties are correlated as they are functionally identical detectors
- For example, if we've underestimated the interaction cross section we should expect an increase in both the ND and FD simultaneously

How a Covariance Matrix Works

- We can encode how the two detectors vary into a matrix
- ullet Run N pseudo-experiments, and calculate the covariance

$$Cov(i,j) = \frac{1}{N} \sum_{i=1}^{N} \left(N_i^{\text{Nominal}} - N_i^n \right) \left(N_j^{\text{Nominal}} - N_j^n \right)$$

Cov(ND, FD) Cov(FD, FD)

Cov(ND, ND) Cov(FD, ND)

Covariance Matrix *C*

In Practice

- For each systematic uncertainty we generate 2000 pseudo experiments
- On the top right is an example Monte Carlo simulated universe where each energy/ selection/detector bin is given a unique number
- We find the covariance between each bin and divide by the contents of the nominal to get a fractional covariance

$$F_{i,j} = \frac{\text{Cov}(i,j)}{N_i^{\text{nominal}} N_j^{\text{nominal}}}$$

 The fractional covariance allows us to apply the covariance to spectra of different shape, i.e., with different oscillation parameters

NOvA Simulation

Using the Matrices

 Once we have the covariance matrices for each systematic, we can simply add them together for the total covariance

$$C_{\text{Total}} = C_{\text{XSec}} + C_{\text{Flux}} + C_{\text{Detector}} + \cdots$$

By inverting the covariance matrix we can make a test statistic

$$\chi^{2} \equiv \sum_{i,j} \left(N_{i}^{\text{data}} - N_{i}^{\text{model}} \right) \times \left(C_{\text{Total}}^{-1} \right)_{i,j} \times \left(N_{j}^{\text{data}} - N_{j}^{\text{model}} \right)$$

• If bins i and j change as we expect, then the contribution to χ^2 is smaller

Checking our Sensitivity

- We can check our test statistic by comparing a MC 3 Flavor prediction to a library of simulated spectra which include sterile oscillation
- The oscillation parameters in the library have $10^{-4} < \sin^2\left(\theta_{24}\right) < 1$ and $10^{-3}~{\rm eV}^2 < \Delta m_{41}^2 < 10^2~{\rm eV}^2$
- On the right are some preliminary results of this test
- The 3 flavor prediction compared with the closest match from the sterile universes are shown on top
- Below is the ratio of the best fit to the 3 flavor prediction

Conclusions

- By using covariance matrices we can gain access to the neutrino events in our ND while still accounting for the functionally identical FD
- This is especially useful for sterile neutrino searches as the ND can help us search for short baseline oscillations
- This analysis still ongoing, but we look forward to showing our sensitivity in the near future