The Hubble constant in the axi-Higgs universe

Luu Hoang Nhan

in collaboration with

Leo WH Fung, Lingfeng Li, Tao Liu, Yucheng Qiu, S.-H.Henry Tye

New Perspectives 2021

16 Aug 2021
H_0 and S_8 tensions in ΛCDM

$H_0 = 67.36 \pm 0.54 \ (\LambdaCDM)$

$H_0 = 73.2 \pm 1.3 \ ($SH0ES$)$

→ 4.1σ discrepancy

$S_8 = 0.832 \pm 0.013 \ (\LambdaCDM)$

$S_8 = 0.766^{+0.020}_{-0.014} \ ($KiDs-1000$)$

→ 2.8σ discrepancy

Planck 2018 (1807.06209)
When m_e increases
→ electrons recombine faster
→ earlier recombination
→ reduced sound horizon

$$r_S(z_*) = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$

→ increasing H_0
H_0 and S_8 in ΛCDM + m_e

$H_0 = 69.1 \pm 1.2$ (ΛCDM + m_e)

$H_0 = 73.2 \pm 1.3$ (SH0ES)

$\rightarrow 2.2\sigma$ discrepancy

$S_8 = 0.821 \pm 0.010$ (ΛCDM + m_e)

$S_8 = 0.766_{-0.014}^{+0.020}$ (KiDs-1000)

$\rightarrow 2.5\sigma$ discrepancy

Hart & Chluba (1912.03986)
Axi-Higgs theoretical model

- The Higgs field coupled to an ultralight axion

\[V = m_a^2 f_a^2 \left(1 - \cos \frac{\phi}{f_a}\right) + |K(\phi)(m_s^2 F(\phi) - \kappa h^+ h)|^2 \]

- The axion evolves following misalignment mechanism:

\[\ddot{\phi} + 3H \dot{\phi} + m_a^2 \phi = 0 \]
Axi-Higgs effective model

• The Higgs VEV is driven by the axion

\[v = v_0(1 + \delta v) = 246 \text{ GeV} \left(1 + \frac{C \phi^2}{2M_{Pl}^2}\right) \]

• Axion density is given by

\[\delta v \propto \rho_a \sim \text{const at early times } z \gg z_a \]

\[\delta v \propto \rho_a \propto (1 + z)^3 \text{ at late times } z \ll z_a \]

with \(z_a \) depending on \(m_a \)
Axi-Higgs is approximately equivalent to ΛCDM $+ m_e + \omega_\alpha$

- similar to ΛCDM $+ m_e$ before recombination
- similar to axion cosmology after recombination
Axion perturbative cosmology

Axion has finite Jeans scale

→ Suppress small-scale structures

→ Reduce σ_8 by definition

$$\sigma_8^2 = \int_0^\infty P(k) W^2(kR_8) dk$$

→ Reduce S_8 as a consequence

$$S_8 = \sigma_8 (\Omega_m/0.3)^{0.5}$$
H_0 and S_8 in axi-Higgs

$H_0 = 69.9 \pm 1.8$ (axi-Higgs)

$H_0 = 73.2 \pm 1.3$ (SH0ES)

$\rightarrow 1.5\sigma$ discrepancy

$S_8 = 0.8031 \pm 0.0098$ (axi-Higgs)

$S_8 = 0.766^{+0.020}_{-0.014}$ (KiDs-1000)

$\rightarrow 1.7\sigma$ discrepancy
Summary and Discussion

• Axi-Higgs can alleviate H_0 and S_8 tensions simultaneously

• Axi-Higgs also alleviates the well-known Lithium puzzle in BBN

• Axi-Higgs could be tested by quasar absorption lines