The Hubble constant in the axi-Higgs universe

Luu Hoang Nhan

in collaboration with

Leo WH Fung, Lingfeng Li, Tao Liu, Yucheng Qiu, S.-H.Henry Tye (arXiv:2102.11257 and arXiv:2105.01631)

New Perspectives 2021

16 Aug 2021

H_0 and S_8 tensions in Λ CDM

Planck 2018 (1807.06209)

- $H_0 = 67.36 \pm 0.54$ (ACDM) $H_0 = 73.2 \pm 1.3$ (SH0ES) → 4.1 σ discrepancy
- $S_8 = 0.832 \pm 0.013 (\Lambda \text{CDM})$ $S_8 = 0.766^{+0.020}_{-0.014} (\text{KiDs-1000})$ $\rightarrow 2.8\sigma$ discrepancy

$\Lambda CDM + m_e$ model

When m_e increases

- \rightarrow electrons recombine faster
- \rightarrow earlier recombination
- \rightarrow reduced sound horizon

$$r_{S}(z_{*}) = \int_{z_{*}}^{\infty} \frac{c_{S}(z)}{H(z)}$$

 \rightarrow increasing H_0

H_0 and S_8 in Λ CDM + m_e

Hart & Chluba (1912.03986)

- $H_0 = 69.1 \pm 1.2 (\Lambda \text{CDM} + \text{m}_e)$ $H_0 = 73.2 \pm 1.3 (\text{SH0ES})$ $\rightarrow 2.2\sigma$ discrepancy
- $S_8 = 0.821 \pm 0.010 (\Lambda \text{CDM} + \text{m}_e)$ $S_8 = 0.766^{+0.020}_{-0.014} (\text{KiDs-1000})$ $\rightarrow 2.5\sigma$ discrepancy

Axi-Higgs theoretical model

The Higgs field coupled to an ultralight axion

$$V = m_a^2 f_a^2 \left(1 - \cos \frac{\phi}{f_a} \right) + |K(\phi)(m_s^2 F(\phi) - \kappa h^+ h)|^2$$

• The axion evolves following misalignment mechanism:

$$\ddot{\phi} + 3H\dot{\phi} + m_a^2\phi = 0$$

Axi-Higgs effective model

• The Higgs VEV is driven by the axion

$$v = v_0(1 + \delta v) = 246 \text{ GeV}\left(1 + \frac{C\phi^2}{2M_{Pl}^2}\right)$$

• Axion density is given by

 $\delta v \propto \rho_a \sim \text{const}$ at early times $z \gg z_a$ $\delta v \propto \rho_a \propto (1+z)^3$ at late times $z \ll z_a$

with z_a depending on m_a

Higgs-VEV evolution

Axi-Higgs with $m_a \simeq 10^{-30} \text{ eV}$

- similar to $\Lambda \text{CDM} + m_e$ before recombination
- similar to axion cosmology after recombination

Axi-Higgs is approximately equivalent to $\Lambda \text{CDM} + m_e + \omega_a$

Axion perturbative cosmology

Axion has finite Jeans scale

- \rightarrow Suppress small-scale structures
- \rightarrow Reduce σ_8 by definition

$$\sigma_8^2 = \int_0^\infty P(k) W^2(kR_8) dk$$

 \rightarrow Reduce S_8 as a consequence

$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

H_0 and S_8 in axi-Higgs

- $H_0 = 69.9 \pm 1.8$ (axi-Higgs) $H_0 = 73.2 \pm 1.3$ (SH0ES) → 1.5 σ discrepancy
- $S_8 = 0.8031 \pm 0.0098$ (axi-Higgs)
- $S_8 = 0.766^{+0.020}_{-0.014}$ (KiDs-1000)
- \rightarrow 1.7 σ discrepancy

Summary and Discussion

- Axi-Higgs can alleviate H_0 and S_8 tensions simultaneously
- Axi-Higgs also alleviates the wellknown Lithium puzzle in BBN
- Axi-Higgs could be tested by quasar absorption lines

