

Wanqiang Liu

Lattice Renormalization of Quantum Simulations

arXiv:2107.01166
In collaboration with
Marcela Carena,
Henry Lamm,
Ying-Ying Li

August 19, 2021 @ New Perspectives 2021

Lattice simulations: the non-perturbative tool for Quantum Field Theories (QFT)

The standard model of particle physics

• • •

Lattice QFT on classical computers: the method, the strengths and the weaknesses

• Imaginary time QFT (or equilibrium thermodynamics): $e^{i\hat{H}t} \rightarrow e^{-\beta\hat{H}}$

$$Z = \text{Tr}e^{-\beta \hat{H}} = \sum_{G_{luons}, Q_{uarks}} e^{-S(G_{luons}, Q_{uarks})}$$
 Monte Carlo simulations

- Difficult problems for classical lattice QFT:
 - Finite fermion density (S is complex)
 - Viscosity (needs real time evolution)

•

Easier on a (future) QC!
$$e^{itH_{QFT}} \rightarrow e^{itH_{QC}}$$
 Regularization

Simulating a lattice gauge theory on a QC

• Kogut-Susskind Hamiltonian

EM field: energy density =
$$\frac{1}{2}(E^2 + B^2)$$

$$H_{KS}(a) = \frac{c(a)}{a} \left(g_H^2(a) \sum_{\{ij\}} l_{ij}^2 - \frac{1}{g_H^2(a)} \sum_{s} \text{Re Tr } U_s \right) \equiv H_K + H_V$$

Electric

Magnetic

- Digitization:
 - A high- l^2 cut-off;
 - A discrete subgroup

•

A quantum circuit for simulating lattice gauge theories

H. Lamm, et al, arXiv:1903.08807

The need of scale-setting (renormalization)

- Scale-setting: determine physical separations a_t , a from input parameters g_H , δ_t
- Computation resources $\propto \left(\frac{L}{a(g_H, \delta_t)}\right)^a \frac{T}{a_t(g_H, \delta_t)}$

Physics exists at the continuum limit

• Example: particle mass

$$m_i^{measured}(g_H, \delta_t) = m_i^{phys} a_t(g_H, \delta_t) + \mathcal{O}(a^2(g_H, \delta_t), a_t^2(g_H, \delta_t))$$

Lattice artifacts

• Choose scale-setting observables $m_{t,s}$; let them **define** the scales:

$$m_{t,s}^{phys} a_{t,s}(g_H, \delta_t) \equiv m_{t,s}^{measured}(g_H, \delta_t)$$

 $a_{t,s}(g_H, \delta_t)$ absorbs the lattice artifacts of $m_{t,s}^{measured}$

Trotter errors as renormalization effects

- Second-order Trotterization: $e^{it(H_K + H_V)} \approx (e^{i\frac{t}{2N}H_V}e^{i\frac{t}{N}H_K}e^{i\frac{t}{2N}H_V})^N \equiv e^{it\tilde{H}}$
- Trotter errors come from $[H_K, H_V] \neq 0$

$$e^{ia_t H_V/2} e^{ia_t H_K} e^{ia_t H_V/2} = e^{ia_t (H_K + H_V + \frac{a_t^2}{24} [H_V, [H_V, H_K] + \frac{a_t^2}{12} [H_K, [H_V, H_K]] + \dots)}$$

• As renormalization effects: a_t depends non-trivially on δ_t .

 $(\delta_t \equiv \frac{a_t c}{a})$, a dimensionless parameter controlling the size of a step in the circuit)

A numerical study: D4 gauge theory

$$H = \operatorname{Re} \operatorname{Tr} \left[U_2^{\dagger}(t) U_0^{\dagger}(t) U_3(t) U_0(t) \right]$$

$$+ \operatorname{Re} \operatorname{Tr} \left[U_3^{\dagger}(t) U_1^{\dagger}(t) U_2(t) U_1(t) \right]$$

$$- \sum_{i=0..3} \log T_K^{(1)}(i)$$

H. Lamm, et al, arXiv:1903.08807

17 qubits:

- 12 for physical degrees of freedom
- -3 for an ancillary group register
- 2 ancillary qubits

Qiskit@IBM:

Simulating a noiseless quantum circuit on a classical computer.

Initial state:
$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|\psi_0\rangle + |\psi_2\rangle)$$

Observable: $O_{1\times 1} = \text{Re Tr}(U_0 U_3 U_0^{\dagger} U_2^{\dagger})$

Trotter & temporal renormalization

Marcela Carena, Henry Lamm, Ying-Ying Li, and W.L. arXiv:2107.01166

Trajectories to the continuum limit

- Hamiltonian limit $\delta_t \to 0$ at finite a is expensive and unnecessary
- A trajectory to the continuum limit along a finite anisotropy ☑

• Requires the knowledge of a, a_t

11

Connecting Euclidean and Minkowski scale-settings

• Scale-setting is easier in classical simulations than on a QC.

Can we do scale setting on a classical computer, and use it for a QC?

• Yes— we proposed connecting them with analytic continuation

$$a_{t,s}^E(g_H, \delta_{\tau} \to i\delta_t) \to a_{t,s}^M(g_H, \delta_t)$$

• The upper bounds of errors for a^{M} are derived.

Marcela Carena, Henry Lamm, Ying-Ying Li, and W.L. arXiv:2107.01166

Summary

- QCs are important for future non-perturbative QFT.
- The Hamiltonian formalism of lattice gauge theories and a quantum circuit to implement it.
- Renormalization (scale-setting) is crucial to obtaining any physical results from QC simulation of QFT.
- We demonstrated trotter errors as renormalization effects.
- We demonstrated that that Euclidean (classical) simulations can help with scalesetting on a QC and thus save QC resources.