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Lattice simulations:

 the non-perturbative tool for Quantum Field Theories (QFT)

The standard model of particle physics

Neutron 
stars

…

Lattice QCD

Strong 
interaction
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Lattice QFT on classical computers: 

the method, the strengths and the weaknesses

• Imaginary time QFT (or equilibrium thermodynamics) :  eiĤt → e−βĤ

• Difficult problems for classical lattice QFT:


• Finite fermion density (S is complex)


• Viscosity (needs real time evolution)


• …

Z = Tre−βĤ = ∑
Gluons,Quarks

e−S(Gluons,Quarks) Monte Carlo simulations
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Easier on a (future)  QC!




Regularization 

eitHQFT → eitHQC



Simulating a lattice gauge theory on a QC

• Kogut-Susskind Hamiltonian





• Digitization: 


• A high-  cut-off;


•  A discrete subgroup


• …

HKS(a) =
c(a)

a
g2

H(a)∑
{ij}

l2
ij −

1
g2

H(a) ∑
s

Re Tr Us ≡ HK + HV

l2

Electric Magnetic
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EM field: energy density =
1
2

(E2 + B2)



A quantum circuit for simulating lattice gauge theories 

eiHKateiHVat

U12

U24

U34

U13

1 2

43

U(δt) = ei(HK+HV)at ≈ eiHVateiHKat

H. Lamm, et al, arXiv:1903.08807 

Trotter approximation
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The need of scale-setting (renormalization)

Continuum limit
a → 0, at → 0

(gH, δt) (g′￼H, δ′￼t)
a

at

a′￼

a′￼t
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• Scale-setting: determine physical separations  from input parameters   


• Computation resources  

at, a gH, δt

∝ ( L
a(gH, δt) )

d
T

at(gH, δt)



Physics exists at the continuum limit

• Example:  particle mass 


   



• Choose scale-setting observables  ; let them define the 
scales:





 absorbs the lattice artifacts of 

mmeasured
i (gH, δt) = mphys

i at(gH, δt) + 𝒪(a2(gH, δt), a2
t (gH, δt))

mt,s

mphys
t,s at,s(gH, δt) ≡ mmeasured

t,s (gH, δt)

at,s(gH, δt) mmeasured
t,s

Lattice artifacts

0 a
mphys →

at

mmeasured /at

Computational resources 
depend on the path to the 

continuum limit! 
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Trotter errors as renormalization effects

• Second-order Trotterization:     


• Trotter errors come from 





•  As renormalization effects:  depends non-trivially on . 


(  a dimensionless parameter controlling the size of a step in the circuit)

eit(HK+HV) ≈ (ei t
2N HVei t

N HKei t
2N HV)N ≡ eitH̃

[HK, HV] ≠ 0

eiatHV /2eiatHKeiatHV /2 = eiat(HK+HV+ a2t
24 [HV,[HV,HK]+ a2t

12 [HK,[HV,HK]]+…)

at δt

δt ≡
atc
a

,
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A numerical study : D4 gauge theory

Initial state:  

Observable:   

|ψ(0)⟩ =
1

2
( |ψ0⟩ + |ψ2⟩)

O1×1 = Re Tr(U0U3U†
0 U†

2 )

H = Re Tr [U†
2 (t)U†

0 (t)U3(t)U0(t)]
+Re Tr [U†

3 (t)U†
1 (t)U2(t)U1(t)]

− ∑
i=0..3

log T(1)
K (i)

 17 qubits:

-12 for physical degrees of 

freedom 

-3 for an ancillary group register

-2 ancillary qubits 


 

Qiskit@IBM:


Simulating a noiseless quantum 
circuit on a classical computer.

H. Lamm, et al, arXiv:1903.08807 
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 difference  ~20%  due to ⟨O1×1⟩ δt

δt

atm1×1

Extract the lowest frequency

Fit w/.   c0 + ∑
i≠j

[ci,j cos (at (Ej − Ei) k) + si,j sin (at (Ej − Ei) k)]

•  is not a constant—  should be renormalized


• This deviation from linear relation is not large— the 
effect of   renormalization is smaller than state-
mixing.

atm1×1

δt
δt

δt
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Trotter & temporal renormalization

  Marcela Carena, Henry Lamm, Ying-Ying Li, and W.L.  arXiv:2107.01166



atm1×1

g2
H

• Hamiltonian limit  
at finite  is expensive and 
unnecessary 

δt → 0
a

• A trajectory to the 
continuum limit along 
a finite anisotropy  ☑︎


• Requires the 
knowledge of 
a, at

Different  trajectories have the 
same continuum limit:


 

ξt

a → 0, at → 0
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Trajectories to the 
continuum limit



Connecting Euclidean and Minkowski scale-settings

• Scale-setting is easier in classical simulations than on a QC.
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Can we do scale setting on a classical computer, and use it for a QC?

• Yes— we proposed connecting them with analytic continuation


 


• The upper bounds of errors for  are derived.

aE
t,s(gH, δτ → iδt) → aM

t,s(gH, δt)

aM

  Marcela Carena, Henry Lamm, Ying-Ying Li, and W.L.  arXiv:2107.01166



Summary
• QCs are important for future non-perturbative QFT.


• The Hamiltonian formalism of lattice gauge theories and a quantum circuit to 
implement it.


• Renormalization (scale-setting ) is crucial to obtaining any physical results from QC 
simulation of QFT.


• We demonstrated trotter errors as renormalization effects.


• We demonstrated that that Euclidean (classical) simulations can help with scale-
setting on a QC and thus save QC resources.
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