Fitting NOvA cross-section parameters with Markov Chain Monte Carlo

> Michael Dolce for the NOvA collaboration

> > August 19, 2021

New Perspectives Conference 2021

FERMILAB-SLIDES-21-090-ND

Motivation of the MCMC fit

- NuMI Off-Axis ν_e Appearance (NOvA) Experiment observes neutrino interactions to measure oscillation parameters.
- Contains a Near Detector (ND) at Fermilab & Far Detector (FD) 810 km away in Minnesota.
- Primary physics goals: (1) the mass ordering and value of Δm^2_{23} , (2) CP-violation (δ_{CP}), (3) the mixing angle θ_{23} .

Motivation of the MCMC fit

- NuMI Off-Axis ν_e Appearance (NOvA) Experiment observes neutrino interactions to measure oscillation parameters.
- Contains a Near Detector (ND) at Fermilab & Far Detector (FD) 810 km away in Minnesota.
- Primary physics goals: (1) the mass ordering and value of Δm^2_{23} , (2) CP-violation (δ_{CP}), (3) the mixing angle θ_{23} .
- The long-term goal of this MCMC work is to...

...fit the neutrino oscillation $(sin^2(\theta_{23}), \Delta m^2_{23}, \text{and } \delta_{CP})$ and NOvA's physics model parameters...

...simultaneously to the NOvA ND + FD data...

...with MCMC.

■ This talk demonstrates the principle of MCMC fitting.

■ Fit a set of NOvA physics model parameters to fake data.

What is MCMC?

- MCMC is a Bayesian inference parameter estimation tool.
- In Bayes' theorem, we seek to locate the maximum of the posterior probability distribution.
 - Posterior is complex: N parameters $\rightarrow N$ dimensions $(dim(\vec{q}) = 16$, in this talk).

What is MCMC?

- MCMC is a Bayesian inference parameter estimation tool.
- In Bayes' theorem, we seek to locate the maximum of the **posterior probability** distribution.
 - Posterior is complex: N parameters $\rightarrow N$ dimensions $(\dim(\overrightarrow{q}) = 16$, in this talk).
- Explore space by a Markov transition (i.e. a conditional prob.) $T(\overrightarrow{q'}|\overrightarrow{q})$.

What is MCMC?

- MCMC is a Bayesian inference parameter estimation tool.
- In Bayes' theorem, we seek to locate the maximum of the **posterior probability** distribution.
 - Posterior is complex: N parameters \rightarrow N dimensions $(dim(\vec{q}) = 16$, in this talk).
- Explore space by a Markov transition (i.e. a conditional prob.) $T(\overrightarrow{q'} | \overrightarrow{q})$.
- Use Hamiltonian Monte Carlo (HMC) to explore posterior Efficiently & Repeatedly:
 - Include conjugate variable: \overrightarrow{p} , so $(\overrightarrow{q}) \rightarrow (\overrightarrow{q}, \overrightarrow{p})$.

 - In 2D, ball in a gravitational field analogy:
 - Efficiently: if $V(\vec{q}) \downarrow$, then probability \uparrow .
 - Repeatedly: "Drop" ball from different locations - each "drop" is known as a sample.

Divide the ND predictions into topologies

Divide the ND predictions into topologies: ν in Reco $E_{had, vis}$

- GENIE v3 simulation of the five ND topologies in E^{vis}_{had}.
 - Reco $|\vec{q}_3|$ in backup slide.
- Next is to create ND fake data in these topologies...

NOvA simulation

Creating Fake Data

	Shift
Identify the parameters from NOvA's systematic uncertainties	-0.7 σ
to fit.	1.5 σ
	0.3 σ
Apply a random shift to each	-0.2 σ
parameter (from a Gaussian).	-0.4 σ
-	

nominal prediction

- Apply these shifts to the nominal simulation...
- ...to get a new, distorted distribution: the fake data.
- Repeat for each topology.

fake data

NOvA simulation

Fake Data Fitting

 In a perfect fit, many MCMC samples will identically match the true pull values...

Physics Model Parameter

Fake Data Fitting

- In a perfect fit, many MCMC samples will identically match the true pull values...
- RES & FSI parameters: a perfect fit - nearly all (dark red) samples overlap the true pull (black).

Fake Data Fitting

- In a perfect fit, many MCMC samples will identically match the true pull values...
- RES & FSI parameters: a perfect fit - nearly all (dark red) samples overlap the true pull (black).
- QE: samples produce a wide spread of pull values (pink).
 - MCMC tells us about parameters that are not well constrained.

Fitted ND topological distributions: $\nu \text{ in } E_{had, \ vis}$

topologies.

NOvA Fake Data

NOvA Fake Data

Assessing the Fake Data fit

- Use a quantitative metric to evaluate MCMC, the χ² - plotted for each topology.
- $\chi^2 \approx 0$ for all topologies:
 - MCMC fit agrees almost identically to the fake data.
- MCMC can successfully fit NOvA physics model parameters.

Conclusions

- Markov Chain Monte Carlo is a Bayesian inference parameter fitting tool.
- This talk is a demonstration of the fitting procedure:
 - MCMC successfully fits NOvA physics model parameters to fake data.
- Future directions:
 - fit all physics model parameters to ND data.
 - simultaneously fit ND & FD data to all NOvA systematic uncertainties.
- I would like to acknowledge the support of:
 - DOE Office of Science Tufts University grant: DE-SC0019032
 - URA Visiting Scholars Program Award #20-F-05

Back up

Fitting Fake Data

MCMC Prior Choice

- We believe any pull beyond ±3σ does not have a solid physical meaning – "extreme region".
- We use a narrow, Gaussian-like prior to prevent pulls in the "extreme region".

Custom Prior:
$$p(x) = e^{-e^{0.3025x^2}}$$

ND Topological distributions: ν in Reco $|\vec{q}_3|$

Fitted ND topological distributions: ν in $Reco |\vec{q}_3|$

NOvA Fake Data

NOvA Fake Data

NOvA Fake Data

20

Examining marginal distributions

 One advantage of Bayesian inference is the ability to marginalize over undesired parameters to examine the probability distributions for desired parameters.

1D marginals

2D marginals

ND Topological distributions: $\bar{\nu}$ in Reco $E_{had, vis}$

22

ND Topological distributions: $\bar{\nu}$ in $Reco |\vec{q}_3|$

23