

CRP mechanical design status DUNE Vertical Drift CDR 04/2021 B.Aimard, D.Duchesneau, N.Geffroy

Super-CRP for DUNE-VD

6 CRP by Super-Structure

Metallic frame

Brings general stiffness Thermal shrinkage : **25mm** over 200°K and 9 meters

Composite frames

Brings primary stiffness to electronic PCB Thermo-mechanical behaviour close to PCB Thermal shrinkage : **5,5mm** over 200°K and 3 meters

Anodes

Thermal shrinkage : **6mm** over 200°K and 3 meters

> Differential thermal shrinkage must be studied and handled properly to insure planarity

> Decoupling system is foreseen between metallic and composite frames to allow sliding and positioning

Super-CRP for DUNE-VD

DUNE-VD Top plane layout

Bottom Plane Layout

Design of the bottom CRP frame:

having the bottom CE boxes attached below the anode plane +

planarity can be controled by the suporting feet to keep each anode plane within the 5 mm deformation range

- ⇒ More transparent (with a design goal close to 75%) and
- ⇒ Lighter frame thanks to the adaptable supporting feet distribution

The bottom CRPs will be positionned on adjustable feet

Single CRP for Coldbox Test in 2021

Anodes

Material properties for mechanical simulation

Assembly design

Full and drilled PCB : copper plated glass fiber - 3,2mm/2x35µm

Length variation / Deflection measurement

2021/04/20

From measurements : Reference equivalent Young modulus for simulations : **Full Plate : 24600 MPa** (24500-27500 MPa) **Drilled Plate : 10000 MPa** (8800-11700 MPa)

2.5

Supporting points positions

58 supporting points by CRU

3375 mm

Support optimization

Positions optimized by FE simulation to minimize deformations

Especially on edges including connectors

Specific Spacer design allows quick, accurate and clean assembly (no glue)

Tightening sizing tests

- Optimal tightening : 30 50 μm
 - Tests shows that 15µm to 80µm are suitable
- Manual assembly, in force or with cold
 - Liquid Ar/N cooling of the pin induces a -40µm contraction on the PEEK diameter
 - Eltos insures +/-10 μm tolerances on anodes holes
- Real size tests in progress

Vue de face Echelle : 3:1

Materia	al: PEEK - PA6 chargé verre	Mass:	000g	Qty:	-	Project:
Tol:	ISO 2768-mK	Traiteme	ent: /	Ra:		Experiment:
Date:	02/04/2021	Scale:	1/1	Dims:	mm	Set:
Modif:	/	Format:	A4		۲	Subset:
Spacer - Axe DUNE-V					DUNE - VI	
Laboratoire d'Annecy-le-vieux de Physique des Particules BP 110, F-74941 Annecy-Le-Vieux CEDEX					mail : aimard0 Tel: 04 50 09	
Ce document est la propriété exclusive du LAPP. Il est interd						

Capacitive levelmeters developed by LPSC team Height adjusted to nominal liquid level

Composite frame

Design Decoupling systems

Coldbox test : Hybrid solution to combine the 2 types of readout electronics in a suspended CRP configuration

Thickness : 70mm Transparency : 50% (for vertical Argon flow) Mass : 103kg Material : Epoxy / Glass fiber Cost : under 30k€ for prototype, 15-20k€ target for DUNE Last optimization in progress before production start

- Various solutions & configs have been investigated (Omega or IPE)
- Molded omega-structure used for high Stiffness/Mass ratio
- Openings are CNC machined
- Assembled in 3 parts for Colbox test, probably two for DUNE

Coldbox Test version designed to support both Top and Bottom electronics

DUNE-VD versions will be specific to electronics to support, design will be optimized specifically for Top and Bottom planes

Metallic frames

Super-structure for DUNE-VD

Test frame for the ColdboxTest

- Stainless steel frame, done in three part, transported separately and re-assembled in the cryostat
- Also supports the cathode

- Stainless steel frame, done in one part, welded
- Extension design in progress, for assembly tooling and transport box

Concept validated with ProtoDUNE-DP

Thermal shrinkage

Material properties & assembly design

Coefficients of Thermal Expansions (CTE) measured by Cryolab (CERN)

- on Anode material and Glass fiber from manufacturer,
- along two orthogonal directions

CTE for Anode material measured by photogrammetry by CERN metrology team.

Direction : 0°	PCB Perforated	11,31	e ⁻⁶ K ⁻¹
	Cryolab	11,39	e ⁻⁶ K ⁻¹
	Cryolab	11,65	e ⁻⁶ K ⁻¹
	Photogrammetry	10,90	e ⁻⁶ K ⁻¹
	PCB Non-perforated	11,29	e ⁻⁶ K ⁻¹
	Cryolab	11,38	e ⁻⁶ K ⁻¹
	Photogrammetry	11,20	e ⁻⁶ K ⁻¹

Direction 90°	PCB Perforated	9,97	e ⁻⁶ K ⁻¹
	Cryolab	<i>9,98</i>	e ⁻⁶ K ⁻¹
	Cryolab	9,74	e ⁻⁶ K ⁻¹
	Photogrammetry	10,20	e ⁻⁶ K ⁻¹
	PCB Non-perforated	9,73	e ⁻⁶ K ⁻¹
	Cryolab	9,56	e ⁻⁶ K ⁻¹
	Photogrammetry	9,90	e ⁻⁶ K ⁻¹

	Glass-Fiber		
0°	Measured	8,82	e ⁻⁶ K ⁻¹
25°	Measured	8,89	e ⁻⁶ K ⁻¹
90°	Estimation	9,08	e ⁻⁶ K ⁻¹

- PCB perforation has negligible effect on CTE
- Glass-Fiber, as built from the manufacturer, is almost isotropic in plane

Note : A difference of 0,2 e⁻⁶K⁻¹ over 3 meters and 200°K induces a 0,12 mm shrinkage

Those properties are included in FE analysis and impacts on stress and planarity are evaluated

- Thermal shrinkage of Stainless Steel and Glass-Fiber are different
- Links between frames must allow a sliding : the decoupling systems
- Sliding should be handled specifically

Thermal shrinkage focused toward fixed point :

Stainless Steel links between metallic and composite frames :

O Double ball-joint

One direction sliding

- Those parts will be machined at LAPP by the end of April
- Tests in Liquid Argon and fine tuning are foreseen

DUNE-VD : Thermal shrinkage pattern

Links between metallic and composite frames :

One direction sliding

> Differential thermal shrinkage is oriented toward SuperCRP center to minimize dead spaces

Mechanical simulations

Single CRP for Coldbox Test Super-Structure for DUNE-VD

Coldbox Test mechanical simulation

Model :

- Metallic/composite frame, anodes, CE-boxes
- Fours suspension cables (off-centered)

Boundary conditions :

- Gravity (in Air/in Argon)
- Thermal loads

• α _{Stainless Steel} =

- $\alpha_{FG \text{ composite structure}}$
- α_{Anodes}

= 13,2 . 10⁻⁶ K⁻¹ = 8,9 . 10⁻⁶ K⁻¹ = 11,0 . 10⁻⁶ K⁻¹

2021/04/20

Coldbox Test mechanical simulation

Vertical displacements in Air :

Note : Manufacturing and assembly defects not included

Coldbox Test mechanical simulation

Vertical displacements in Liquid Argon (-186°C) :

Z-displacements on Anode with shield :

 $\Delta z_{Anode S} = 0.82mm$

Z-displacements on Anode with collection :

 $\Delta z_{Anode C} = 0,62mm$

Max local relative displacement between anodes : 0,3mm

Step 1: Gravity on SuperStructure alone	(1230 kg)	AIR
Step 2: same + 6 CRPs mass	(208 kg on four points)	AIR
Step 3: same + cathode mass	(660 kg on 12 points)	AIR
Stop 1 · Gravity on SuperStructure along in LAr	$(1000 k_{\sigma})$	l A r
Step 4. Gravity on SuperStructure alone in LAI	(1000 kg)	LAI
Step 4 : Gravity on Superstructure alone in LAr Step 5 : same + 6 CRPs mass in Lar	(1000 kg) (68 kg on four points)	LAI
Step 4 : Gravity on Superstructure alone in LAr Step 5 : same + 6 CRPs mass in Lar Step 6 : same + cathode mass in LAr	(1000 kg) (68 kg on four points) (236 kg on 12 points)	LAI LAr LAr

84

	Temps [s]	Minimum [mm]	Maximum [mm]		Eorce de réaction (Jotal) [N]	
Entire structure	1,	-2,0875	1,5894	Λ7 —	Porce de reaction (total) [N]	
in AIR	2,	-4,5314	3,7174	$\Delta 2_{Air} =$	12354	
	3,	-6,8956	3,8981	10,8 mm	24014	785 kg per
	4,	-1,7118	1,3033		10114	suspension cable
	5,	-2,5107	1,999		14104	
Entire structure	6,	-3,057	2,055	$\Delta z_{LAr} =$	15540	414 kg per
in LAr	7,	-3,0564	2,4746	5,53 mm	6400	suspension cable

2021/04/20

Suspension system

Tested and validated with ProtoDUNE-DP

GAr volume completely closed no sliding parts, no moving sealing

Lateral movement absorbed by lateral deformation of the bellow

- Vertical stroke : **98mm**
- Lateral stroke : +/- 26mm

 Mechanical stop and chimney simple obstruction for maintenance or bellow replacement

• Winch config, to raise manually the CRPs

> Actual system is motorized, manual system design in progress

CRP assembly

From raw parts to packed CRP, ready for transport

The tasks are being defined and detailed for the first CRP construction in 2021 => Input to the CRP factories task definition and optimization (cf: Matt's talk)

Overview of the ProtoDUNE Dual Phase CRPs is available here :

https://lapp-owncloud.in2p3.fr/s/fPC2Sb8KfesLMoS

CRP assembly for ColdTest is done in Clean Room 185 at CERN

Optical table Good surface and flatness

Elcom structure Access from below

Anode panels are glued together on the optical table (in a vacuum bag) Connections are printed

> Once glued, panels can be safely moved and fliped by hand by 4 persons

CAPP

The 58 plastic spacers are placed in the panel

- > Performed on Elcom structure to access from below
- Pins are gently inserted with a mallet, or cooled down in liquid argon / nitrogen, tests in progress

Next steps

Composite frame mounted on metallic frame + crane are brought above panel assembly :

Composite frame – Anodes connection

Anode : Shield layer connection

Anode : Shield layer connection

Second half assembly - Packing

Scenario 2 : Cables during transport

Cables attached to composite frame during transport, distributed on the plane, on « Top plane » side, thanks to cable ties.

Once bellow topcap, cable are tied in cable trays, fixed bellow topcap

Once suspended to hauling system, CRP is detached from transport box

Connection from CRP to cable trays, through chimney to flange

Power supply

~1kg

7 meters

CEbox Cables

Signal

-

- 7 meters
 - ~1.1kg

In total, 13 CEbox, 26kg cables.

Thanks for your attention

