## Future Engineering Challenges in the Particle Physics Sector

Greg Bock All Engineers Meeting 13 Oct 2011





## Mission of the Particle Physics Sector

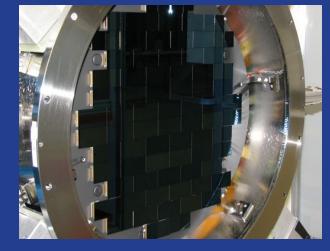
- Support the US HEP program mission to understand how the universe works at its most fundamental level by:
  - Designing, building, and operating experiments for the Energy, Intensity, and Cosmic frontiers
  - Providing a "home" for most of the Laboratory users that make up the OHEP experimental community
  - Leading a focused, efficient program of detector R&D in collaboration with university researchers and other national labs
  - Hosting a leading theoretical physics program aligned with the three frontiers
- Engineering in the PPD Mechanical Department, the PPD Electrical Engineering Dept and CD Electronics Systems Engineering Dept is critical to carrying out this mission
- CD and PPD Depts also provide Engineering support to the Accelerator sector (eg beam instrumentation, LBNE target design)

## The Post Tevatron Era

- Our future involves work toward experiments on three timescales:
  - Near: operate current experiments and construct new experiments (DECam, NOvA, MicroBooNE)
  - Middle: design and develop upgrades to current experiments (CMS) and design future experiments (eg LBNE, Mu2e, SuperCDMS)
  - Middle to Long: develop enabling technologies for future experiments (generic detector R&D). Broad spectrum of efforts for future collider experiments, intensity frontier (Project-X era) and astrophysics.

## **Experiment Operations**

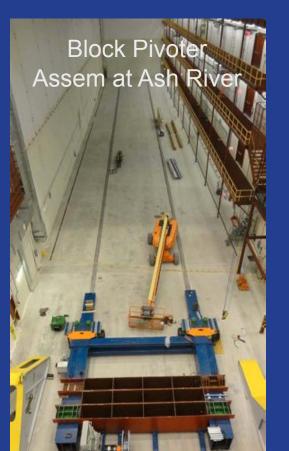
- The end of Tevatron operations means change of operations focus not an end of detector operations:
  - 1. Operate Intensity Frontier experiments (MINOS, MINERvA, MiniBooNE, SeaQuest)
  - 2. Operate Cosmic Frontier experiments (CDMS, DES, COUPP)
  - 3. Support CMS operations
  - 4. Operate Testbeam
  - 5. Decommission CDF & D0 (short term)
- Technical support of operations of intensity frontier experiments will increase
- 3 FTE in FY11 on CDF and D0 will decrease slightly in FY12 for decommissioning


## Current Projects – Dark Energy Camera (DECam)

- 570M Pixel camera for Blanco telescope at Cerro Tololo in the Chilean Andes. Survey of very distant Supernovae to understand why the expansion of the universe is accelerating
- Fermilab designed CCD packaging, focal plane, mounting structure, LN2 cooling system, camera electronics, test facilities in Lab A
- Construction project will complete in next few months with installation in Chile in progress
- Transition to commissioning and operations
  support



Blanco Dome at CTIO

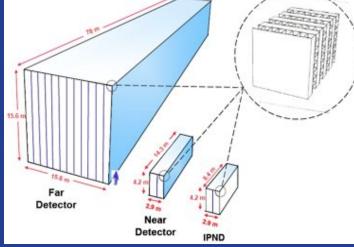

CCDs on Focal Plane





## Current Projects (NOvA)

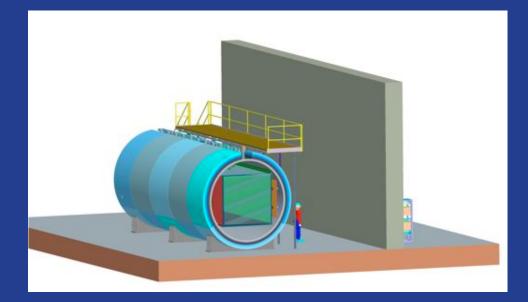
- Neutrino Oscillation appearance experiment using off-axis NUMI beam. About 15kT liquid scintillator far detector in Ash River MN
  - Fermilab responsible for structure design of detector and block pivoter to assemble detector, electronics cooling water system, DAQ (CD), QA on scintilator and PVC extrusions...
- Still significant design tasks eg final design of near detector
- Construction of far detector gearing up, requires engineering oversight
- Like all projects, will need continuing effort to solve the unexpected






#### Prototype Near Det.

6


#### NOvA Detector Concept



October 13, 2011

## Current Projects (MicroBooNE)

- 150T Liquid Argon Time Projection Chamber (TPC) targeted at understanding the MiniBooNE low energy excess
  - Part of LAr TPC development program targeted at 20kT modules for LBNE
- Received CD-2 (baseline approval) and CD-3a (limited construction) this month
- Fermilab: cryogenic system, electronics integration, detector assembly
- Design completion in FY12 with construction starting in FY12



October 13, 2011


#### **Smaller Scale Projects**

- Many smaller scale experiments, particularly in the Cosmic Frontier
- For example: COUPP bubble chambers for Dark Matter searches
  - Several phases at the same time
    - Operation of 4kg chamber at SnoLab (Ontario)
    - Preparing 60kg chamber to deploy at SnoLab
    - Preparing for 500kg proposal
  - Fermilab responsible for pressure vessels, control systems, data acquisition
  - Challenges of very low backgrounds (eg radioactivity of glass windows for outer pressure vessel)



COUPP 60kg Chamber

#### COUPP 60kg Experiment test at



## Future Projects (LBNE)

- Long Baseline Neutrino Experiment
  - Neutrino Oscillations
  - Neutrino Astrophysics
  - Proton Decay
- Two possible detector technologies for far detector:
  - Two 20kT LAr TPCs
  - Two 100kT H<sub>2</sub>0 Cherenkov detectors
- Major PPD involvement in LAr TPC effort
  - Detector devolpment
  - MicroBooNE
  - Lar30 30T membrane cryostat prototype
  - LAr 1 1kT prototype
  - Cold electronics development
- Smaller involvement in H<sub>2</sub>0 detectors
  - Water systems (PPD)
  - PMT procurement (TD)
  - Role will grow significantly if H<sub>2</sub>O is chosen





#### Liquid-Argon Time Projection Chambers Status of R&D Program in the US

Bo

#### The first TPCs in the United States:



Yale TPC

Location: Yale University Active volume: 0.00002 kton Year of first tracks: 2007




Location: Femilab Active volume: 0.00002 kton Year of first tracks: 2008



ArgoNeuT

Location: Fermilab Active volume: 0.0003 kton Year of first tracks: 2008 First neutrinos: June 2009

#### MicroBooNE



Location: Femilab Active volume: 0.1 kton Start of constructs 2011

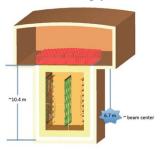
#### Test stands to improve liquid-argon technology:

#### Luke



Location: Fermilab Purpose: materials test station Operational: since 2008

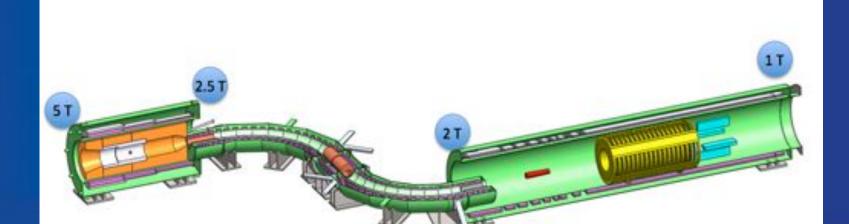
#### LAPD

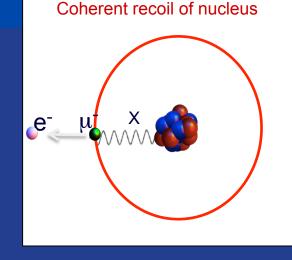



Location: Femilab Purpose: LAr purity demo Operational: | 2011

LAr35: Membrane Cryostat Prototype

> Location: Fermilab Volume: 0.035kT Operational: 2012


LAr1: Engineering Prototype



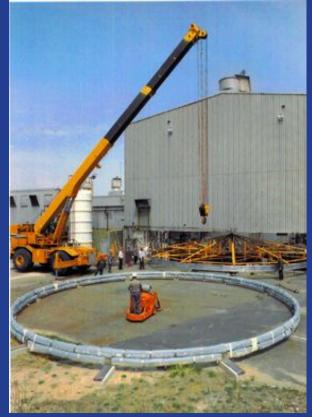

Location: Fermilab Volume: 1kT Operational: 2013-14?

## Future Projects – Mu2e

- μ<sup>-</sup> to e<sup>-</sup> conversion μ<sup>-</sup> converts to an e<sup>-</sup> in the field of a nucleus
  - No emission of neutrinos
  - Nucleus remains intact coherent
  - Signal is a monoenergetic 105 MeV e<sup>-</sup>
  - Sensitivity goal <6 X 10<sup>-17</sup>
- Received CD-0, preparing for CD-1
- Large Fermilab involvement in converting p-bar accumulator and building beamline/target (AD) and muon channel solenoids (TD) – see Stu's talk
- PPD/CD responsibilities: overall project engineering and detector design (straw tracker, cosmic ray veto), DAQ






## Future Projects – g-2

- Measure the magnetic moment of the muon
- Higher precision follow up to BNL experiment
- Share accumulator with Mu2e (Muon Campus)
- Move experimental equipment from BNL
  - Ring, coils very large, difficult logistics
  - Rebuild cryo and control systems for ring magnet coils
  - Still defining roles of organizations

#### G-2 Experiment at Brookhaven



#### G-2 Coil at Brookhaven





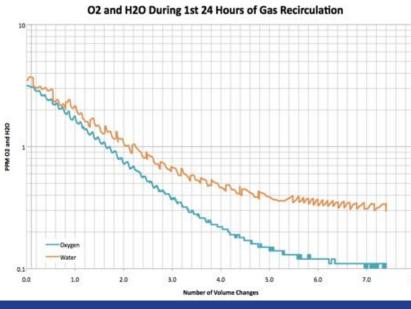
#### Coil Transporter?

## **Detector Upgrades - CMS**

- Small improvements/fixes during 2013 shutdown
  - Fixing part of Hadron CALorimeter -> install Silicon Photomultipliers (SiPM)
  - Install another layer (rescope) of Encap MUon detectors
- Two major phases of upgrades to LHC experiments
  - 2017/18 full design luminosity
  - Early 2020s even higher intensity
- First phase includes these areas of Fermilab involvement:
  - New HCAL electronics (new QIE ASIC)
  - Replacement of pixel vertex detector, Fermilab involved in forward detector design and potentially new readout electronics (ASIC)
  - Collaboration on development of next generation optical links for Data transfer off of detector
- Second phase much larger in scope (eg whole new tracker)
  - Current activities part of generic detector development include rad hard sensors for pixel detectors, development of ASICs for track triggering

## Detector Development – Cryogenic Detectors

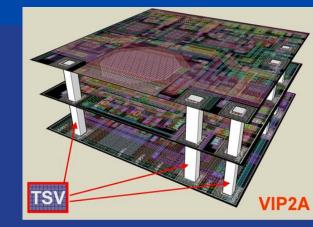
- General Lar TPC development for future (eg LBNE)
  - LAr Purity Demonstrator in PC4 high purity without evacuation
  - Development of TPC electronics to work at cryogenic temps
- LAr for Dark Matter distillation column in PAB


#### LAPD 20T Tank

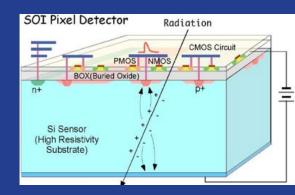


#### Complete LAPD System

# Gaseous Ar: O<sub>2</sub> and H<sub>2</sub>O contamination drop with Filtration







#### Goal for liquid in ppb scale

## **Future Detector Development**

- ASICs Development of new integrated circuits for future experiments an ongoing focus
  - 3d Technology major focus of last 5 years
    - Multiple silicon wafers bonded together
    - Much higher circuit density, small trace lengths
    - Possibility of circuits bonded directly to a sensor layer
  - Possible HEP applications of 3d technology
    - Content addressable memory for LHC triggers (like CDF Silicon Vertex Trigger)
    - Integrated silicon detector, readout and triggering for LHC
    - Integrate Silicon Photomultiplier (SiPM) with electronics
    - Intensity frontier applications not yet explored
- Many other areas of detector R&D:
  - CCDs eg Low noise readout (PPD/EED and CD/ESE)
  - Solid Xenon for Axion searches
  - Hadron calorimetry total absorption calorimetry
  - Plastic scintillator new methods of extruding
- What's your new detector technology idea?
  - Could be evolutionary improve on an existing concept
  - Could be revolutionary a completely new way of doing things



3d Pixel Readout Chip



Silicon on Insulator Integrated Senor and electronics

## People are the key

- To carry out all of these projects we need skilled engineers and tools to support them
- Ability to complete projects has been limited by availability of mechanical engineers. Need to have more engineers for current work and for labs future
  - Almost no hiring for over a decade!
  - Two new mech engineer hires last year
  - Focus on mentoring of new hires, COOPs and GEM students
  - Use contractors until future projects are secured
- Need technical support staff :
  - New mechanical designers hired in recent years supplemented by contractors as needed
  - Few technician hires for last decade
    - Accommodate operations crews from CDF and D0 operations
    - Be prepared to hire as future projects ramp up

## Tools

17

- CAD tools are as essential for engineers and designers as wrenches and soldering irons for technicians - Need to keep tools up to date
- I-DEAS is being replaced by NX as standard mechanical CAD tool
  - I-Deas being phased out, NX is industry leader (both Siemens)
  - 3D modeling and updated User Interface
  - Use of common parts (both industrial and Fermi specific)
- Lab-wide data management strategy:
  - Teamcenter Engineering Data Management System
    - CAD models and drawings, engineering notes and analysis, technical specifications and requirements, procedures...
    - Teamcenter and NX will be tightly coupled
  - SharePoint general Data Management System
    - Presentations, general documentation and correspondence, project files...
- Also looking to consolidate CAD software in the electrical and civil areas
  - Electrical wide range of needs (simple PC layout to designing ASICs)
  - Just for design of ASICs, need tools from several vendors to get necessary capabilities
    October 13, 2011

## NX and Teamcenter Status and Schedule

- NX About 90 people already trained
  - Design Groups continuing with hands-on training with NX
    - To minimize the start up time
  - Anyone interested in taking training in NX contact Tony Metz
  - NX is available now for training and early adopters
  - I-Deas data (for designated projects) will be converted to NX starting in March
    - Need to clean up this data now
- Teamcenter Production Hardware and Software installed (includes backup)
  - Two rounds of testing completed with the Development environment Siemens completing fixes (estimate completion – early November)
  - Once Development is complete; copy configuration to Production (December)
  - Siemens is working on custom Teamcenter training (Training start December)
  - First pilot project to start in mid-January
  - First major project to be incorporated in March
  - Additional projects added sequentially