

Vertical Drift Cathode

- Requirements and Interactions with other consortia
- Cathode Frame and Suspension
- Cathode Mesh
- Arapuca Integration
- Installation plan

The Requirements

- Nominal Drift Field: 450 V/cm => Cathode at -300 kV
- Drift Field uniformity $< \pm 1\%$ [in 99.8% volume]
- Local electric field < 30 kV/cm
- Cathode Resistivity : > 1 G Ω /sq. (lower limit 1 M Ω /sq., upper limit 10 T Ω /sq.)
- Dimension: 3000 mm x 3375 mm x 50 (max) mm (footprint of CRP)
- Weight < 100 kg in air (including Photon Detector to minimize deformation of CRP)
- Bending < 20 mm in Lar
- Mesh transparency > 85% over Photon Detector and
- > 60% elsewhere for LAr flow
- Mesh pitch < 30 mm for field uniformity

The Cathode and the CRP

- 6 cathodes to be attached to the SuperCRP
- All wires to be vertical

The supporting frame

- Polyester glass fiber
- 50 mm height
- U/I profile
- Reinforcement with crossribs above the mesh to insure mesh planarity
- Total weight (without Arapuca and mesh): 62.5 kg in air, 8.3 kg in LAr
- \Rightarrow Available **Payload**: 37,5 kg
- Arapuca : about \sim 7x4=28 kg in air
- \sim 10 kg available for the "electrical" part of the cathode
- Expected performances over the whole cathode:
 - Distortion below 32 mm in Air
 - Distortion below 15 mm in LAr

The supporting frame

- Prototype Design Completed (P.Rosier)
- Production of 2 frames:
 - Pb (bad composition of the fiber glass) with first batch => one month of delay
 - One frame to be delivered this summer at CERN
 - The second will stay at Orsay for tests (creep, deformation ...)
- **Impact** of **transport** to be taken into account
- ⇒ New design to be performed for ½ frames with easy reconnection at SURF
- ⇒ No major difficulties foreseen for final design

The suspension system

- Total load in Air ~ 600 kg
- Total load in LAr < 250 kg depending on mesh and Arapuca material
- Tension wire from 200 N to 1100 N

Wires made with Dyneema:

- High resistance with small diameter (3 mm is our choice)
- Low creep:
 - Creep at 300MPa = 0.00007%/day
 - 10 years = 87600 hours = 0.25% = 15 mm
 - In our case, we are at 142 Mpa max in air and 100 Mpa in LAr
- => Some measurements foreseen in NP02

M-Rig Max Standing Rigging

M-Rig Max	
Part Nos: TV**** JTV***	
-DM20 for Zero Creep	
-Construction optimised for stre	ength
-Colour coated with Polyuretha	ne for improved abrasion resistance
-Heat set and super pre-stretch	ed for zero constructional stretch
-Super Lightweight	
-Higher strength than wire of th	ne same diameter
-Good resistance to UV and Che	emicals
-Easily Terminated with locking	D12 Splice

Diameter	Mass	strength	(spliced)	Stretch	
mm	g/m	kg	kg	mm/mm/1000kg	
2.5	4.5	902	839	0.04709	
3	6.8	1353	1259	0.03141	
4	11.1	2224	2069	0.01911	
5	15.6	2874	2672	0.01479	

- One wire will support one, two or four cathode corners according to its position
- A single long wire and 1/2/4 short wires at the end
- Connection device between wires to be designed

The Length Adjusting Device

- System located in a cathode frame corner, integrated inside the H beam and accessible from below.
- Rope tension from 215 N to 1125 N
- Rope elongation due to load from 2 mm to 9 mm
- Rope thermal expansion 14 mm (negative CTE)
- Different initial lengths for the ropes to take it into account (16 to 23 mm)
- Final adjustment with the length adjusting device +/- 10 mm

The Cathode Mesh

- More than 100 J stored in the cathode
- In case of discharge:
 - if fully metallic, the energy is released in **few nanoseconds** => **severe damage** is possible
 - initial solution with Stainless Steel mesh connected by resistive material (release time increased to few seconds) but big risk of arching in LAr which will short-circuit the resistive part => back to previous situation
- ⇒ Move to **fully resistive mesh** to slow down the discharge
- ⇒ Current Design
 - Metallic mesh over Arapuca to easily insure transparency above 85%
 - FR4 laminated with Kapton and machined to create a mesh with transparency above 60% elsewhere
 - Cost: ~200 k€ of material, ~200 k€ for machining
 - Mechanical behavior after machining to be checked for resistive mesh: the providers were doubtful to get a satisfactory result starting from a too thin panel which will be machined to reach a 60% transparency because the amount of resin is not sufficient to insure a correct mechanical behavior (some fibers are not surrounded by enough resin to insure cohesion) => Manageable increase of weight?
 - With 5 mm thickness and 80% transparency, the 2 meshes weight 38 kg (76kg for 60%)

Backup solutions under investigation with CERN:

- Resistive FR4 (Vetronit), machined for transparency: same pb of mechanical behavior?
- Kapton foil alone with eventually additional crossribs for planarity:
 - Preliminary tests after punching 200 holes (80% transparency) on a standard Kapton A3-size foil seems promising: object still difficult to tear, limited bending when put on a frame
- Peek loaded with Carbon fibers using a 3D printer:
 - 1 mm thickness mesh produced
 - Resistivity above 100 G Ω , difficulty to measure it
 - Similar costs

Arapuca Integration

- Weight limit agreed with Arapuca team
- Routing of cables in the edge of the cathode frame
- Holes already implemented to go through the frame
- Possibility to easily plug external cables (fibers, umbilical ...) to the electronic box from below to be investigated
- Impact on Arapuca interconnections to be clarified due to shortcuts introduced by copper wires

Electronic box?

Integration Plan

At the lab:

- Reception of the frames produced in the industry
- Installation of Arapuca electronics and cable routing in the frame
- Mounting of all mesh elements (except the four above Arapuca tiles)

At SURF:

- Connection of the 2 ½ frames
- Installation of the 4 Arapuca tiles, connection to its electronics
- Mounting of the 4 missing meshs
- => Full cathode ready to be installed

Our preferred scheme

- Sequence proposed in agreement with CRP installation (LAPP team)
- Wires installed on SuperCRP
- SuperCRP lowered using its winches around 6m to attach the 6 cathodes at human height
- SuperCRP raised at nominal position with the 6 cathodes attached to it
- Connection to HV
- Connection of Arapuca electronics
- Final tuning of the cathodes alignment

Pros:

- No cathode or set of 6 cathodes to be lifted by external means at 6 m
- Minimal activity on the cathode at 6m height

Cons:

• Cabling of CRP more tricky

Open questions:

- How the Arapuca will be connected up to flanges?
- Is there any connector to plug or everything is already connected to electronic box (or elsewhere)?

Conclusion

To be done