

APA detector Structural Analysis

APA group

Fermilab

16-JUNE-2021

FEA model – Elasto-plastic (bilinear) behavior to evaluate peak stress

Geometry & Mesh of the complete tetrahedral model

Load and constraints of the complete tetrahedral model

LC 5,6	[3] + [5] + [6]

Comp onent ID	Description	Nominal Mass [kg]	Mass with contingency [kg]	Contingency [%]	COG (location)
[1]	APA frame structure only	315.5	322	2	.T.).
[2]	Upper/Lower APA with four wire layers (highest)	464.9	481.1	3.5	-
[3]	Upper/Lower Factory APA	492.3	510	3.6	
[4]	Integrated APA assembly	631	654.5	3.7	-0
[5]	APA protection	74	81.4	10	-
[6]	Winder support bars	66	67.3	2	-

V-Mises Stress plot of the complete tetrahedral model (LC 5)

Elasto-Plastic Analysis

- Bilinear Isotropic Hardening
 - Yield Strength 189 MPa
 - Youngs Modulus 200 GPa
 - Tangent Modulus 2.835 MPa

V Mises Stress Plot in area of interest (LC 5)

- Max Stress around 215 MPa
- Element edge length around 5mm

Total Strain of the Sub-model

- Total max strain 1.42e-3

(Proposed) analytical method to evaluate peak stress

Extract reaction forces and moments

Туре	Force Reaction	
Location Method	Contact Region	
Contact Region	Contact Region	
Orientation	Global Coordinate System	
Extraction	Contact (Underlying Element)	
Suppressed	No	
Options		
Result Selection	All	
Display Time	End Time	
Results		
X Axis	16493 N	
Y Axis	1397.8 N	
Z Axis	21.375 N	
Total	16552 N	

-	Definition							
	Туре	Moment Reaction						
	Location Method	Contact Region						
	Contact Region	Contact Region						
	Orientation	Global Coordinate System						
	Summation	Centroid						
	Extraction	Contact (Underlying Element)						
	Suppressed	No						
-	Options	·						
	Result Selection	All						
	Display Time	End Time						
-	Results							
	X Axis	581.7 N·mm						
	Y Axis	-9657.3 N·mm						
	Z Axis	8.8083e+005 N·mm						
	Total	8.8088e+005 N·mm						

Contact region (used to extract reaction forces and moments)

Extract reaction forces and moments

Section located on the foot beam nearby the contact region

Assumption – forces and moments will not have a significant variation between the contact region and the marked section

Fx [kN]	16.5
Fy [kN]	1.4
Fz [kN]	0
Mx [Nxm]	0.6
My [Nxm]	-9.7
Mz [Nxm]	880

Head tube – geometrical properties

A =1.77in^2 or 1142 sq-mm lx or lz = 4.4 in^4 or 1.83*10^6 mm^4 ly = lx+lz = 3.66x10^6 mm^4 H = 4in or 101.6mm

Head tube – geometrical properties

V-Mises eqv. stress = 35.7MPa, factor 5.3 smaller than the allowable stress (190 Mpa). – stresses in the head tube are fine. Buckling Analysis (Expanded the buckling slide from 2nd June 2021)

Head tube – geometrical properties

Radius of gyration of a 4"x4" long tube in the unbraced direction

Slenderness ratio shows that the Euler formula for critical buckling load is accurate

Factor of 1.5 applied for additional tension from cooling wires

Shows a safety factor of 10 against buckling, even if the load was applied in a configuration that allowed for buckling
$$\begin{split} r_g &= 1.58 \ [in] = .0401 \ [m] (per \ AISC \ Manual \ of \ Structural \ Steel \ Construction) \\ L_{beam} &= 6.0 \ [m] \ , \frac{6.0[m]}{.0401[m]} = 150 \ slenderness \ ratio, which \ is \ a \ slender \ column \\ I &= 1.77 \ [in^2] * (1.58 \ [in])^2 = 4.42 \ [in^4] = 1.84e^{-6}[m^4] \\ I \ for \ all \ beams = 3 * I = 5.52e^{-6}[m^4] \\ P_{cr} &= \frac{pi^2 * E * I}{L^2} = 3.14^2 * 207e^{11} \ [Pa] * \frac{5.52e^{-6}[m^4]}{(6.0[m])^2} = 313200 \ [N] \\ Wire \ load \ is \ 6.5 \ N \ per \ wire, \ or \ 9100 \ \frac{N}{m} \\ 9100 \ \left[\frac{N}{m}\right] * 2.3[m] * 1.5 = 31395 \ [N] \\ \frac{313200[N]}{31395[N]} = \ 9.98 \ Safety \ margin \ against \ buckling \end{split}$$

This buckling consideration has been used for several previous reviews and has approved. EDMS #2142671 & 2100877

Buckling Analysis – Analytical method based on AISC G.Gallo

* ENGINEERING NOTE 之 ENGINEERING NOTE Fer = [0.658 (207 H/6)] × 207 H/6 = 74.4 H/6 G. GALLO BUCKLING ANALYSIS 4" × 4" × 18 GEONSERT PROPERTIES Pu = Fen . Ag = 74, 4 M/2 × HAZ uni = 85.0 [KN] [53-1] DESIGN COMPRESSIVE STRENGTH = PY.67 = 50.9 [KN] Ag = 1.77 in2 (1142 m2) CROSS-SECTION ARAA $R_x = R_y = 1.58$ in (0.0401 m) redive of gradian L = 6 m Box BRAM LANGTH ACTUAL LOAD KL = 1 × 6 = = 150 (SLENOGRNESS RATIO) 2x = 0.0401 = WIRT LODO = 6.5 N/1012- on 9100 N - CONTRESSION ELEMENT : NON SCENOSA / SLENDER , TOTAL WIRE LOAD = 9100 N x 2.3 m x 1.5 = 31.4 M $\frac{b}{t} = \frac{4.0 \text{ in}}{.125 \text{ in}} = 32$ NOTAC WIRY COAD = 31.4 KN = 10.5 HN $k_{1} = 1.40 - \sqrt{\frac{B}{F_{7}}} = 1.40 \cdot \sqrt{\frac{193,000}{203}} \frac{W_{0}}{W_{0}} = 42.7$. Since of is spaceon THAN An the d"x d'x Ye" THE ACTUAL LOAD 10.5 NN is SHALLER THAN THE BON BEAM is CEASSIFIED "NON SLEWDER" ELEMENT. DESIGN COMPRESSIVE STRENGTH, SO THE STRUCTURE AISC E3. FLAXURAL BUCHLING OF NEUBORS WITHOUT SCENDER ELEMENTS. IS OK. $\frac{KL}{2} = 150 \qquad 4.71. \sqrt{\frac{6}{F_{T}}} = 4.71. \sqrt{\frac{193,000}{207} \frac{11}{M_{0}}} = 143.8$ $\frac{KL}{2} \leq 4.71 \sqrt{\frac{6}{F_{y}}} \quad so \left[\frac{F_{c,L}}{F_{c,L}} \left(0.658 \frac{F_{y}}{F_{L}} \right) F_{y} \right] \left[\frac{653-2}{F_{y}} \right]$ $F_{e^{2}} = \frac{7^{2} E}{(H_{L}^{2})^{2}} = \frac{3.14^{2} \cdot 193,000 \ Hr_{a}}{(150)^{2}} = \frac{84.7 \ Hr_{a}}{PAG_{F}} = \frac{63-4}{1-2}$ PA65 2-2 PAG-5 1-2

Buckling Analysis – AISC source Geometrical properties of the box beam 4in x 4in x 1/8in

		ksi	Av Axia	Table 4-4 (continued) ailable Strength in I Compression, kips Square HSS								
F	Shape	34		XALEX	HSS4×4×							
1	esion, in.	0.3	78 5/16 1/4		f.	3/16		1/0				
-	b/ft	15	17.3	0.2	91	0.23	0.233		74	0.	116	
-		P_n/Ω_c	P_n/Ω_c $\phi_c P_n$	PalQa OrP		12.	12.2		9.42		6.46	
C	esign	ASD	LBFD	ASD	L RED	Pn/S2c	¢cPn	P_n/Ω_c	¢cPn	P_n/Ω_c	¢cPn	
-	0	132	198	113	170	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	- ster	131	197	110	100	92.8	140	71.1	107	48.8	73.3	
1000	2	129	194	111	169	92.4	139	70.8	106	48.6	73.0	
30.3	3	126	190	109	163	91.3	137	69.9	105	48.0	72.1	
1	4	123	184	105	158	86.8	134	66.6	103	47.1	70.1	
1 '11	5	118	177	101	152	83.6	126	64.2	96.6	40.8	66	
atio	6	112	168	96.5	145	70.0	100	04.2	00.1	44.2	00,	
gyr	7	106	159	91.2	143	79.8	120	61.5	92.	4 42.4	4 63	
of	8	98.8	149	85.4	128	73.0	114	58.3	87.	40.	3 60	
lius	9	91.6	138	79.3	119	66.1	90 3	51.5	77	1 38.	6 5	
rad	10	84.1	126	73.0	110	61.0	91.7	47.5	5 71	.4 33	.1 4	
ast	110	76.5	115	66.6	100	55.0	04	1 42		56 00	E	
ole	12	69.0	104	60.3	90.6	50.9	76	3 30	8 5	0.8 31	7.0	
ott	12	61.7	02.9	54.0	81.0	45.7	10.	7 26	0 5	10 2	5.2	
bed	14	54.7	82.0	18.0	72.2	40.9	61	3 20	2 2	85 2	28	
res	15	47.0	72.0	42.2	63.5	36.1	54	3 28	7	131 2	0.4	
it .		1.0	1	12.6	00.0	-						
N	16	42.1	63.3	37.1	55.8	31.7	47	.7 25	0.3	38.0	18.0	
E	17	37.3	56.1	32.9	49.4	28.1	42	.3 2	2.4	33.6	16.0	
K	18	33.3	50.0	29.3	44.1	25.1	37	.1 2	0.0	30.0	14.2	
É	19	29.9	44.9	26.3	39.6	22.5	33	3.8 1	7.9	26.9	12.8	
Bue	20	27.0	40.5	23.8	35.7	20.3	3	0.5 1	6.2	24.3	11.5	
ele	~	04.4	267	21.5	32.4	18/	1 2	7.7	4.7	22.1	10.5	
ctiv	21	24,4	22.5	10.6	20.5	16.8	3 2	5.2	13.4	20.1	9.53	
ffe	22	22.3	33.5	19.0	27.0	15	4 2	3.1	12.2	18.4	8.72	
- u	23	20.4	30.0	10.0	21.0	14		12	11.2	16.9	8.01	
	24	18.7	28.1	16.5	24.8	12		95	10.4	15.6	7.38	
	25	12.94				10.				155 88	6.00	
	26			25 125	and the	1		P. and			0.84	
					154	1		C.S. C.		1.000		
-					Pro	operties					-	
1.2		14-	70		4 10		3.37		2	.58		
A_g , in. ²		4.78		4.10		7.80		E	5.21			
$l_X = l_y$, in. ⁴		10.3	5	and the second	1 40		1.52		3	1.55		
$r_x = r_y$, in.		1.4	17	Langer -	1.49		11.02	ual to or o	reater th	nan 200.	1007	
ASD		LRF	D	Note: He	eavy line in	ndicates	KL/ry eq	ual to of §	groutor u			
0			00	1.2.2.2.4					08	10 - 20	and a	

Buckling Analysis – AISC source Definition of nonslender/slender element

DESIGN BASIS User Note: Design by qualification testing is the prescriptiv User Note: Design by qualitionally, on most projects where the standard sta most building court, the architect has been the responsible professional, the architect has been the responsible to the professional profession profession requirements. Design by User Note: R prime professionar, the requirements. Design by analysis i coordinate fire protection. Designation of the person(s) responses approach to fire protection. Designation of the person(s) responses additional sector additionadditional se approach to fire protections is a contractual matter to be address Stiffened Ele For stiffened Design for Corrosion Effects pression fore Design for Control of the strength or serviceability of a structure where corrosion may impair the strength or tolerate corrosion or shall be designed to tolerate corrosion or shall be 13. (a) For web Where corrosion that the designed to tolerate corrosion or shall be the filler of grav corrosion. radius. 14. Anchorage to Concrete (b) For w Anchorage between steel and concrete acting compositely shall be design ers or Anchorage between account of the design of column bases and he design dance with Chapter I. The design of column bases and anchor rods dista accordance with Chapter J. pres hp is **B4. MEMBER PROPERTIES** ers wel Classification of Sections for Local Buckling (c) Fo For compression, sections are classified as nonslender element or slender-element be For compression, section element section, the width-to-thickness ratios of its re-(d) F sections. For a non-stable shall not exceed λ_r from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element series For flexure, sections are classified as compact, noncompact or slender-element of tions. For a section to qualify as compact, its flanges must be continuously connect to the web or webs and the width-to-thickness ratios of its compression element (e) shall not exceed the limiting width-to-thickness ratios, λ_p , from Table B4.1b. If the width-to-thickness ratio of one or more compression elements exceeds λ_n , but does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section. 1a. Unstiffened Elements For unstiffened elements supported along only one edge parallel to the direction of the compression force, the width shall be taken as follows: 2 (a) For flanges of I-shaped members and tees, the width, b, is one-half the full-flange (b) For legs of angles and flanges of channels and zees, the width, b, is the full noninal dimension. (c) For plates, the

Buckling Analysis – AISC source Nominal compressive strength

× 6.0 m FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 161-33 Jon ... EFFECTIVE LENGTH The effective length factor, K, for calculation of member slenderness, KL/r, shall be 32 ined in accordance with Chapter C or Appendix 7, L = laterally unbraced length of the member, in. (mm) r = radius of gyration, in. (mm)User Note: For members designed on the basis of compression, the effective slenderness ratio KL/r preferably should not exceed 200. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 15 This section applies to nonslender element compression members as defined in section B4.1 for elements in uniform compression. User Note: When the torsional unbraced length is larger than the lateral unbraced length. Section E4 may control the design of wide flange and similarly shaped columns. The nominal compressive strength, Pn, shall be determined based on the limit state of flexural buckling. $P_n = F_{cr} A_g$ (E3-1) The critical stress, F_{cr} , is determined as follows: (or $\frac{F_y}{2}$ inelastic. $F_{cr} = 0.658 \overline{F_r} F_v$ (E3-2) elautic (E3-3) $F_{cr} = 0.877 F_{e}$ where F_e = elastic buckling stress determined according to Equation E3-4, as specified in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as applicable, ksi (MPa) (E3-4) KL

Specification for Structural Steel Buildings, June 22, 2010 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

18

FEA linear buckling analysis

FEA model – Linear buckling analysis

Large displacement ON

