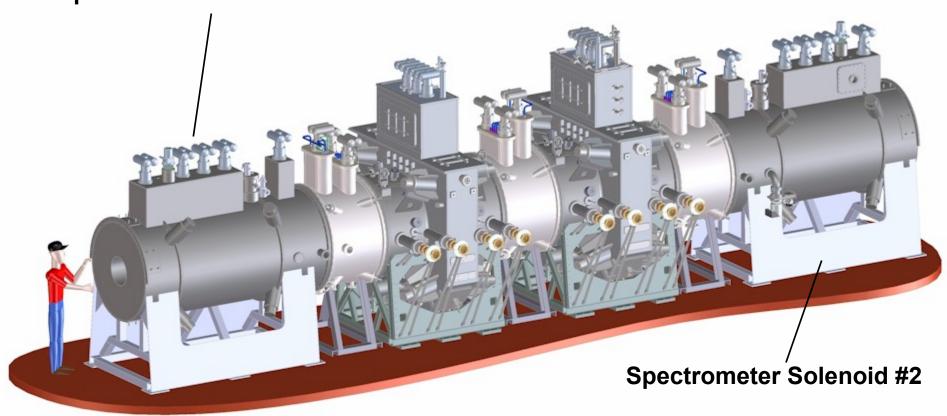
MICE Spectrometer Solenoid FY12 Plans

MAP L1 + L2 Management Meeting October 20, 2011

> Steve Virostek Lawrence Berkeley National Lab

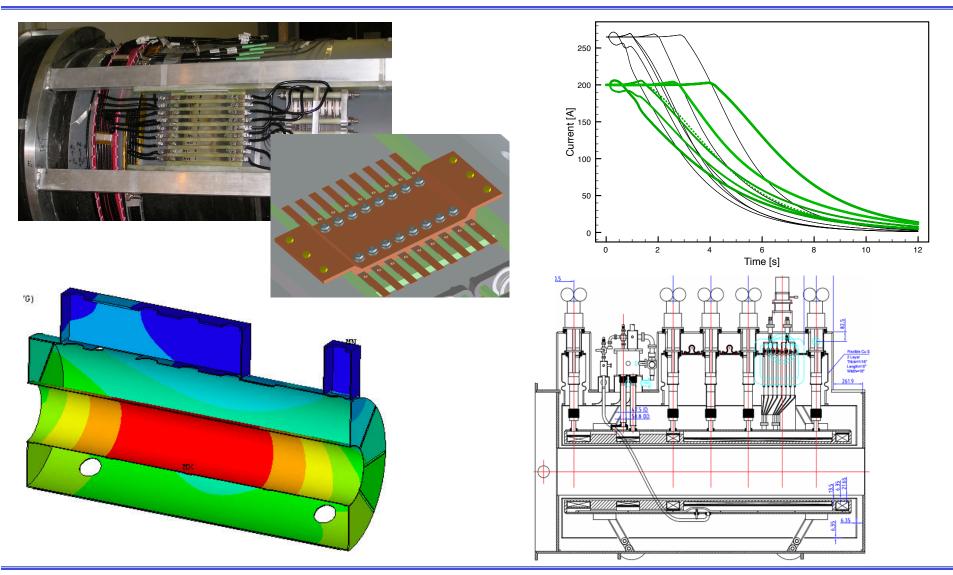


- Overview of the Spectrometer Solenoids
- Modification plans
- Current status
- Schedule
- FY12 Budget

Spectrometer Solenoid #1

Spectrometer Solenoid - MAP L1 + L2

- Key requirements: coils must be trained to 275 amps, and the cryocoolers must maintain the LHe in the cold mass (no boil-off) Not yet achieved for either magnet
- Both magnets have previously been assembled and tested
- Various design issues and test failures have necessitated disassembly of both of the magnets
 - Magnet 1: blockages in the helium recondensing circuit prevented operation of the thermal siphon
 - Magnet 2: Failed HTS lead due to inadequate cooling of the upper end of the leads
 - Magnet 2B: Failed LTS lead in the cold mass and overheated quench resistors
- All design issues being addressed with recent modifications


- Based on the results of the previous testing and the recommendations of several review committees, LBNL has carried out an extensive series of analyses
- A variety of design improvements are being implemented based on the results of the analyses
- The focus of the analyses included:
 - Quench protection system including the suitability of the existing passive system instead of an active system
 - Heat leaks to the 4.2K cold mass
 - Thermal/mechanical performance of the radiation shield
 - Overall shield and cold mass cooling power available

- Reduction of cold mass heat leaks:
 - Improve MLI application and QC
 - Improve vacuum insulation and measurement
 - Eliminate radiation shine in vent/fill lines
 - Implement provisions to damp thermo-acoustic oscillations
 - Reduce cold mass support intercept temperatures
- Improvement of the passive quench protection system :
 - Analyses indicate passive system will work
 - Divert current from quenched HTS leads with an active, external circuit
 - Conductively cool the quench resistors to prevent overheating
- Addition of two 2-stage cryocoolers to the system
- Stabilize the cold leads w/extra copper to prevent burnout
- Improve the radiation shield performance:
 - Reconstruct the majority of the shield with pure aluminum
 - Improve the thermal connection from the cryocoolers to the shield

Spectrometer Solenoid - MAP L1 + L2

- The completed modification plan has been presented to the MAP TB
- A contract mod was made to the Wang PO for the completion of detailed design work for the system modifications (now complete)
- A 2nd contract mod was made to the Wang PO for completing the physical magnet modifications (now under way)
- The Magnet 2 cold mass has been opened to allow modification
- The radiation shields have been remade with 1100 aluminum
- Custom MLI blankets for the cold mass have been procured
- A conductively cooled quench resistor assembly has been fabricated
- Modifications to the magnet vacuum vessels for added cryocoolers have been completed
- The Magnet 2 cold mass will be ready for leak check in ~2 weeks
- Magnet 1 to follow Magnet 2 by ~ 3 months in the schedule

FY12 Schedule

Spectrometer Solenoid FY12 Schedule

ID	Task Name	3rd C	3rd Quarter			4th Quarter			1st Quarter			2nd Quarter			3rd Quarter	
		Jul	Aug	J Sep	Oct	l Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	Magnet 2 Fabriction and Assembly							:			:		Ψ			
2	Fabrication Tasks		<u> </u>		-			-	Ţ		-			-		
3	Cold Mass Mod							=								
4	Radiation Shields				<u> </u>						-			-		
5	Cooler Tower		_		- 1			-						-		
6	Current Leads				1			-			-			-		
7	Fill and Vent Towers				1			=						-		
8	MLI Wrapping							-			-			1		
9	Instrumentation				1			:			-			-		
10	Cooler Mounts							-			-			-		
11	Assembly Tasks				1			-		-						
12	Cold Mass and Shield Installed				1			-						-		
13	Vacuum Vessel Closed				1			-			-			-		
14	Prepare for Training				1			-						-		
15	Cooldown and Training							1		—	┉			1		
16	Cooldown							=			-			-		
17	Training				: :			=		6	<u> </u>			:		
18	Packaging and Shipping										i (-		
19	Magnet 1 Fabriction and Assembly					<u> </u>		: :			:			:		
20	Fabrication Tasks				1	<u> </u>		-			-	2		-		
21	Cold Mass Mod				1			<u> </u>			-			-		
22	Cooler Tower				1			-			-			-		
23	Current Leads													-		
24	Fill and Vent Towers							=								
25	MLI Wrapping						_	-			•			-		
26	Instrumentation							-			ŧ					
27	Cooler Mounts				1			-			<u> </u>	l		-		
28	Assembly Tasks							. —								
29	Cold Mass and Shield Installed							_			-					
30	Vacuum Vessel Closed				1			-						-		
31	Prepare for Training				: :			Ē						1		
32	Cooldown and Training							1			-	÷,	_	-		
33	Cooldown							1								
34	Training							=			-			-		
35	Packaging and Shipping															

Spectrometer Solenoid - MAP L1 + L2

Description	Labor (\$k)	M&S (\$k)	
Design and analysis at LBNL	19		
Management and fab oversight	108		
Assembly tech work at vendor	164		
PS/quench system modifications	16	24	_
LBNL supplied hardware	20	15	
Control system design and fab	40		
Vendor contract modifications		0*	*all Wang NMR contract mods have
Training utilities and cryogens		88	 been either paid or liened – no add'l mods are anticipated
Magnet testing and training		49	
System documentation		34	
Shipping to RAL		40	
Totals	368	250	+ \$173k contingency = \$791k

LBNL effort is ~2.7 FTE over 10 months (includes no cost manpower help from RAL)

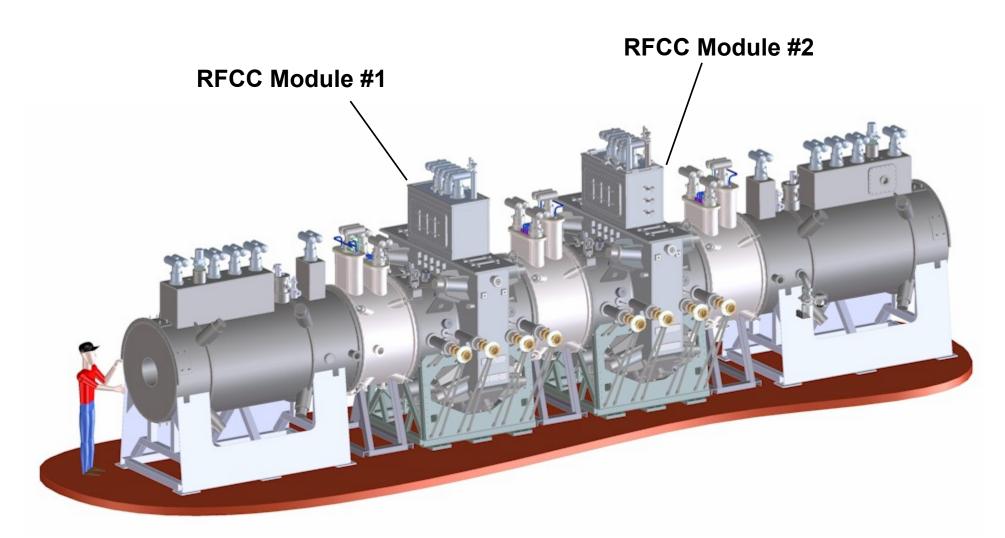
• No FY13 costs are anticipated as both magnets are scheduled to be completed during FY12

- A budget variation of +/-20% is not likely to have any effect on the Spectrometer Solenoid completion during FY12
- The same source of equipment money is bring used by LBNL for the MICE RFCC modules (including the coupling coils)
- A budget variation will have an impact on the RFCC FY12 work (see next talk)

MICE RFCC Module FY12 Plans

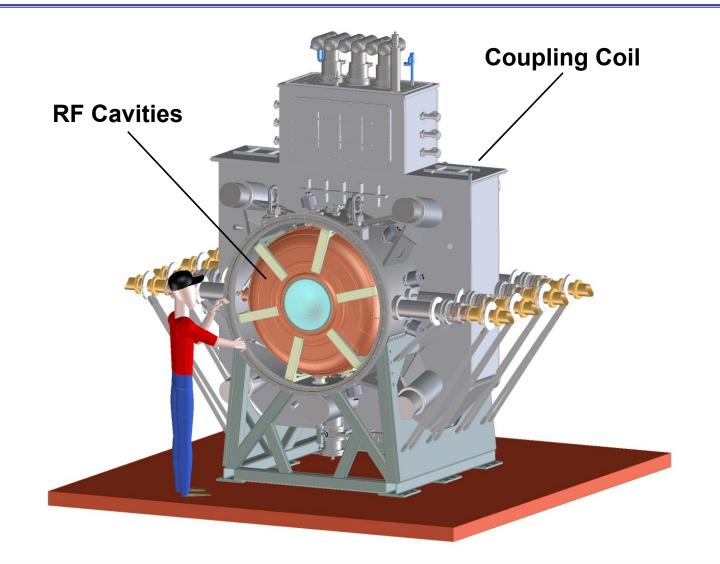
MAP L1 + L2 Management Meeting October 20, 2011

> Steve Virostek Lawrence Berkeley National Lab



- Overview of the RFCC Modules
- Coupling Coil status
- Coupling Coil plans
- RFCC Module status and plans
- Schedule
- FY12 Budget

RFCC Module - MAP L1 + L2



- The MICE RF and Coupling Coil Module has been designed by LBNL and our collaborators
- MICE incorporates two RFCC modules to be provided by LBNL
- Each module consists of a single superconducting Coupling Coil integrated with four tunable 201 MHz normal conducting RF cavities and a vacuum vessel
- The Coupling Coil design was developed by the Harbin Institute of Technology in China (a MICE collaborator)
- A third Coupling Coil (first delivered) for MuCool will be sited in the MTA at Fermilab
- The 201 MHz cavity design is based on the prototype cavity developed by LBNL and J-Lab and now operating in the MTA

RFCC Module Overview

RFCC Module - MAP L1 + L2

- The detailed design of the Coupling Coils is complete with the exception of the quench protection system and the lead stabilization detailed designs (to be undertaken by MIT)
- LBNL is currently carrying out changes to the fabrication drawings as well as translation from Chinese to English
- Winding and fabrication of the first Coupling Coil cold mass was completed at the QiHuan Company in Beijing, China
- The coil arrived at LBNL last week where cooling tube welding and epoxy potting will be completed
- Additional superconductor for the two MICE coils is currently being procured

- Current plans call for all three cold masses to be tested and trained to full current at Fermilab prior to magnet assembly
- A suitable test cryostat obtained from FSU is now at Fermilab being prepared for coil testing
- All parts for the magnet cryostats will be fabricated in China by the QiHuan Company and shipped to the US
- Current plan is for QiHuan to also wind the 2nd and 3rd coils
- Various options for cryostat assembly and welding being explored: outside vendor (Meyer Tool or other), FNAL, LBNL
- Assembly of the first unit likely to occur at FNAL or LBNL
- Assembly of 2nd and 3rd units still in planning: options include QiHuan, FNAL, LBNL, RAL, outside vendor

- Work on other RFCC components has continued at LBNL at a slower pace due to Coupling Coil delays and limited funding
- All associated design work has been completed
- Ten copper RF cavities are complete and at LBNL
- Cavity tuner prototype has been fabricated and tested
- RF and beryllium windows for first module are now on hand
- Activities at LBNL for FY12 include: surface prep and electropolishing of cavities, fabrication of tuner actuators
- FNAL FY12 activities: fabrication of RF couplers for prototype and single MICE cavities, fabrication of tuner arms for a single cavity test

FY12 Schedule

Coupling Coil FY12 Schedule

ID	Task Name	r	4t	n Quart	er	1st C)uarter	2nd	Quarter	3rd	Quarter	4th Quarter	1st Quart
		Sep	0	ct Nov	Dec	Jan	Feb Mar	Apr	May Jun	Jul	Aug Sep	Oct Nov Dec	Jan Feb
1	First Coupling Coll		-	_									-
2	Cold Mass Tasks	(
3	Tube weld at LBNL]	(8 8 9 8 8 8 8 8 8 8 8 8 8	
4	Epoxy impregnation at LBNL	1											
5	Test dewar setup at FNAL	1							l				
6	Coil test and training	1											
7	Magnet Assembly	1				—							
8	Parts fabrication (all cryostats)]			(
9	Cryostat vessel assembly	1										8 8 9 9 9 9 9 9 9	
10	Magnet system assembly]											
11	Cold testing]										_	
12	2nd Coupling Coll]				•						— •	
13	Cold Mass Tasks]										—	
14	Coil winding and ship to LBNL]											
15	Tube weld at LBNL												
16	Epoxy impregnation at LBNL												
17	Test prep at FNAL]											
18	Coil test and training										_		

• Schedule of FY12 RFCC cavity related tasks at LBNL are not shown here

FY12 Budget

RFCC Tasks (cavities)

Description	Labor (\$k)	M&S (\$k)
Ongoing design at LBNL	15	
Management and fab oversight	72	
First cavity tuner actuators		30
Cavity prep for electropolish	22	3
Cavity electropolish	25	12
Totals	134	45

Total RFCC costs: \$876k + \$210k contingency = \$1086k

Coupling Coil Tasks (LBNL only)

Description	Labor (\$k)	M&S (\$k)
Fab drawings and design issues	55	
Management and fab oversight	109	
Quench protection/lead design (MIT)	198	
Control system design and fab	40	
Cooling tube weld at LBNL (2 coils)	28	4
Epoxy potting at LBNL	9	3
Cryocoolers (3 each)		159
Sensor procurement		40
Shipping to FNAL (coils and parts)		16
Shipping to LBNL (from China)		36
Totals	439	258

• Costs shown are LBNL costs only and do not include FNAL testing efforts or possible magnet assembly effort

RFCC Module - MAP L1 + L2

- There are still many uncertainties in the RFCC completion plan, particularly associated with the assembly of the Coupling Coil cryostats and final assembly and testing
- Not included in the budget presented here:
 - test cryostat setup/cold mass testing at FNAL (1st coil test in FY12)
 - cryostat assembly for at least 1st unit (\$200k \$400k each)
 - 1st magnet final assembly and testing
- Further uncertainties for the assembly of the 2nd and 3rd magnets in FY13 and beyond
- The possibility of winding one or two extra coils has been discussed as a contingency, but not yet planned or budgeted

- A decrease in the LBNL budgeted work would likely result in: reduced contingency, delay of RF cavity surface processing, deferment of cryocooler purchase
- Budget increase: any additional funding would likely be used to move forward earlier with the work on the 2nd and 3rd coupling coils (primarily cryostat assembly)
- There are still big unknowns in the cost and budget for the assembly and testing of the first magnet since the plan is not yet established