

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Ongoing Activities for the Fortran Interface

Minerba Betancourt and Steven Gardiner, Fermilab June 17, 2021

Reminders

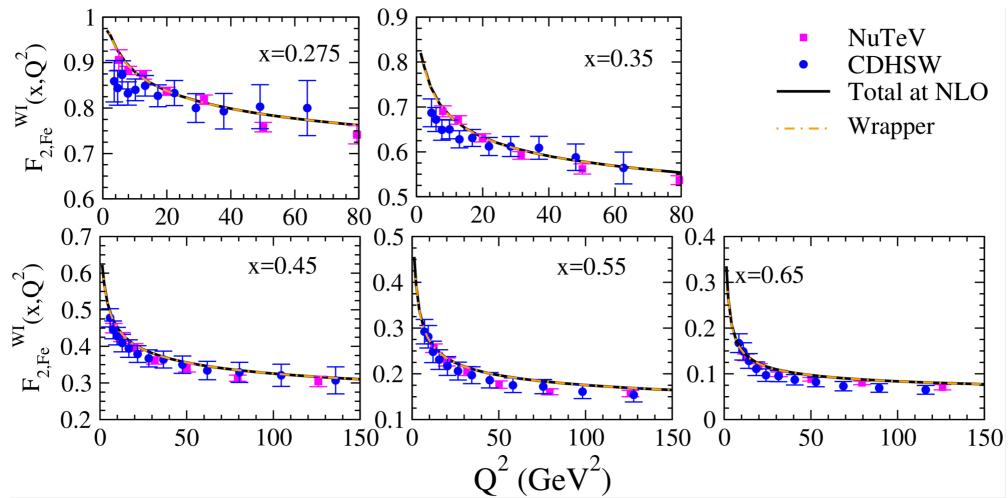
- The theory community is producing a rich spectrum of models for the different neutrino interactions, including charged current quasi-elastic, resonance, deep inelastic, meson change current, coherent, neutral current...
- Some available theoretical models are not available in the event generators
- Having common interface between event generators will allow neutrino experiments to fully benefit from recent theoretical advances in a timely manner
- Common interface means the neutrino community would be able to plug the model immediately into any of the available event generator (GENIE, NuWro, NEUT and GIBUU)
- The community might need different interfaces to accommodate the different calculations available

Several Models available

Table 1: Summary of responders to the neutrino interaction modeling survey

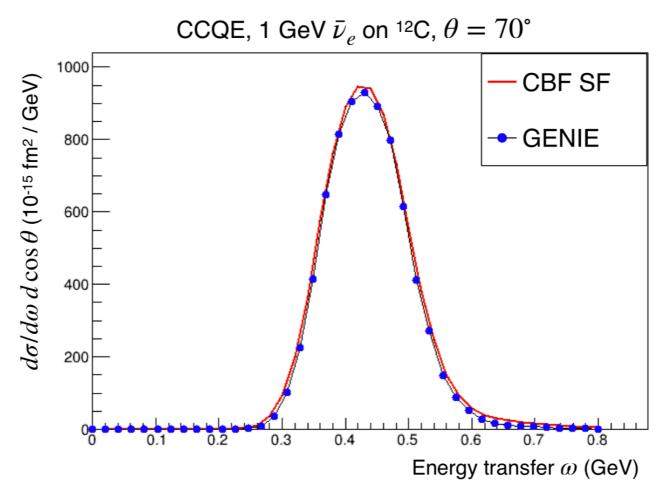
Authors	Processes
Saori Pastore et al. [35]	QE and MEC
Gil Paz et al.[37]	QE
Artur Ankowski et al. [38]	QE
Alessandro Lovato et al. [39]-[42]	Elastic scattering, low energy transition, QE
Luis Alvarez et al. [43] - [49]	QE, (coherent) pion, eta production and
	photon emission
Noemi Rocco et al. [32] - [34]	QE, MEC, 1 and 2 pion production
Raul Jimenez et al. [50] - [51]	QE
Minoo Kabirnezhad. et al. [52]-[53]	Single pion production
Natalie Jachowicz et al. [54]-[62]	Elastic scattering, low-energy excitations,
	QE, MEC, SRC and single pion production
Toru Sato et al. [63]	Meson(pion,kaon,eta,2pi) production for
	nucleon in nucleon resonance region
Huma Haider et al. [64]	Deep Inelastic Scattering
Juan Nieves et al. [65]-[90]	QE+SpectralFunctions+RPA+2p2h+pion
	production (Delta, chiral background, some
	other N*)
Maria Barbaro et. al. [91]	Quasi-elastic scattering, two-nucleon
	emission (2p2h), pion production, higher
	resonances, deep inelastic scattering, both
	CC and NC processes.

- Full report is available at: https://indico.fnal.gov/event/24164/sessions/7454/attachments/127928/154529/Survey.pdf
- Some models are not included in the different event generators and experiments analysis chain


Interfacing Theory with Event Generators

- Different approaches have been discussed and have started
 - Table approach: Theorists provide the model in a standard format, for example a differential cross section in some combination of variables
 - Hard-scatter events: This strategy is based on an interface developed by Collider Physics community,
 - Interface using lepton and hadronic tensors: Theorists would provide both tensors, recalculated and presented in a standard format or provide the code that computes these
 - Fortran interface: develop a uniform computer code format that allows the theorists to implement cross section calculation directly into the event generator, for example a Fortran wrapper that attaches an event generator (C++) to theory code (Fortran)

Fortran Interface


- Some models are written in Fortran, another interface could be a Fortran wrapper that attaches an event generator to theory code
- An Fe (xan p) was presented at the workshop, a Fortran wrapper that takes the structure functions FI, F2 and F3, using the deep inelastic interaction calculation from Huma Haider
- Validation: Fortran original calculation (black) and GENIE wrapper (dashed yellow)

Spectral Function in GENIE

- Spectral function has been included in GENIE using the table approach and a translation of the code from Fortran to C++ for QE electron and neutrino scattering.
- QE neutrino scattering is in validation stage
- Spectral function is available for more process including MEC and RES
- We would like to have a Fortran interface to have rapid access to other available models written in Fortran

Summer project: "test drive" of a Fortran-based interface

- We have a summer student (Syrian Truong) working with us to write a wrapper for the electron scattering QE and validate it with the existing code
- The goal is to create a working real-world example that can be used to clarify issues related to a general "theory API"
 - Passing 4-momenta, physics parameters, etc. between GENIE and an external theory code
 - Event generation and integration of total cross sections
- Implementation will be kept as general as possible to (hopefully) allow re-use of the new GENIE code for other processes. Some examples:
 - Select final-state kinematics via phase space generation rather than the "traditional" GENIE approach of throwing specific variables (Q², W, etc.)
 - Similarly, use MC integration to get the total cross section instead of a custom numerical integrator for each interaction mode
 - (Longer-term) Define a flexible data structure for passing model parameters between GENIE and an external code for runtime configuration / reweighting

