
Minerba Betancourt and Steven Gardiner, Fermilab
June 17, 2021

Ongoing Activities for the Fortran
Interface

Minerba Betancourt

Reminders

�2

• The theory community is producing a rich spectrum of models for the different
neutrino interactions, including charged current quasi-elastic, resonance, deep
inelastic, meson change current, coherent, neutral current…

• Some available theoretical models are not available in the event generators

• Having common interface between event generators will allow neutrino
experiments to fully benefit from recent theoretical advances in a timely manner

• Common interface means the neutrino community would be able to plug the
model immediately into any of the available event generator (GENIE, NuWro,
NEUT and GIBUU)

• The community might need different interfaces to accommodate the different
calculations available

Minerba Betancourt

Several Models available

�3

• Full report is available at: https://indico.fnal.gov/event/24164/sessions/7454/attachments/127928/154529/Survey.pdf

• Some models are not included in the different event generators and experiments
analysis chain

Minerba Betancourt

Interfacing Theory with Event Generators

�4

• Different approaches have been discussed and have started
• Table approach:Theorists provide the model in a standard format, for example a

differential cross section in some combination of variables
• Hard-scatter events: This strategy is based on an interface developed by Collider

Physics community,
• Interface using lepton and hadronic tensors: Theorists would provide both

tensors, recalculated and presented in a standard format or provide the code that
computes these

• Fortran interface: develop a uniform computer code format that allows the
theorists to implement cross section calculation directly into the event generator,
for example a Fortran wrapper that attaches an event generator (C++) to theory
code (Fortran)

Minerba Betancourt

• Some models are written in Fortran, another interface could be a Fortran wrapper
that attaches an event generator to theory code

• An example was presented at the workshop, a Fortran wrapper that takes the
structure functions F1, F2 and F3, using the deep inelastic interaction calculation
from Huma Haider

• Validation: Fortran original calculation (black) and GENIE wrapper (dashed yellow)

Fortran Interface

�5 01/07/2020 Steven Gardiner | “Theory API“ discussion

Fortran wrapper example

13

• structure function from H. Haider 

- Plot shows Fortran original calculation (black) and GENIE wrapper (dashed yellow) 

- Original calculation from H. Haider et al., PRC84, 054610 (2011)

F2(x, Q2)

Minerba Betancourt

Spectral Function in GENIE

�6

• Spectral function has been included in GENIE using the table approach and a
translation of the code from Fortran to C++ for QE electron and neutrino
scattering.

• QE neutrino scattering is in validation stage
• Spectral function is available for more process including MEC and RES
• We would like to have a Fortran interface to have rapid access to other available

models written in Fortran

Minerba Betancourt

Summer project: “test drive” of a Fortran-based interface

�7

• We have a summer student (Syrian Truong) working with us to write a wrapper for
the electron scattering QE and validate it with the existing code

• The goal is to create a working real-world example that can be used to clarify
issues related to a general “theory API”

- Passing 4-momenta, physics parameters, etc. between GENIE and an external
theory code

- Event generation and integration of total cross sections

• Implementation will be kept as general as possible to (hopefully) allow re-use of the
new GENIE code for other processes. Some examples:

- Select final-state kinematics via phase space generation rather than the
“traditional” GENIE approach of throwing specific variables (Q2, W, etc.)

- Similarly, use MC integration to get the total cross section instead of a custom
numerical integrator for each interaction mode

- (Longer-term) Define a flexible data structure for passing model parameters
between GENIE and an external code for runtime configuration / reweighting

