

Muon Task Force

Valeri Lebedev Sergei Striganov and Vitaly Pronskikh

<u>Contents</u>

- Introduction
- Basics of muon production
- Muon production in cylindrical target
- Muon phase space manipulation
- Conclusions

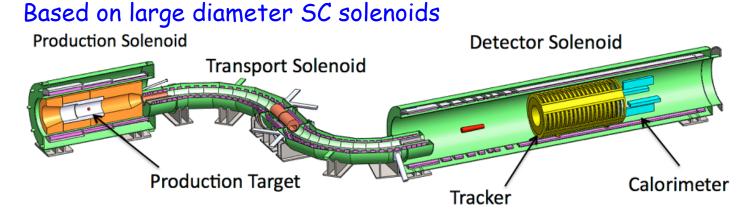
Accelerator Advisory Committee Fermilab November 7-9, 2011

<u>Objective</u>

- Project X can deliver ~1 MW beam
 - Factor ~40 larger than the power expected in μ -to-e
 - Variable time structure of the beam
 - Almost arbitrary within few μ s period
- How to use this power?
 - How should the target look like?
- What kind of experiments can be done?
- Which additional possibilities for experiments can the large power result in?
 - Achievable muon flux
 - What else can be done to improve experiments with stopped muons?
 - Can ionization cooling of muons help?

Muon Physics

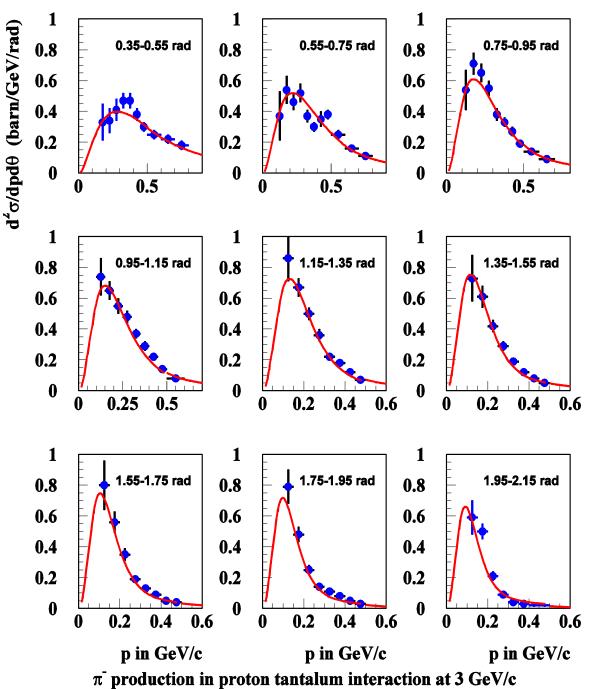
- Possible experiments
 - Next generation $(g-2)_{\mu}$ if motivated by next round (theory, LHC)
 - Next generation μ -to-e
 - new techniques for higher sensitivity and/or other nuclei.
 - μ edm
 - μ→3e

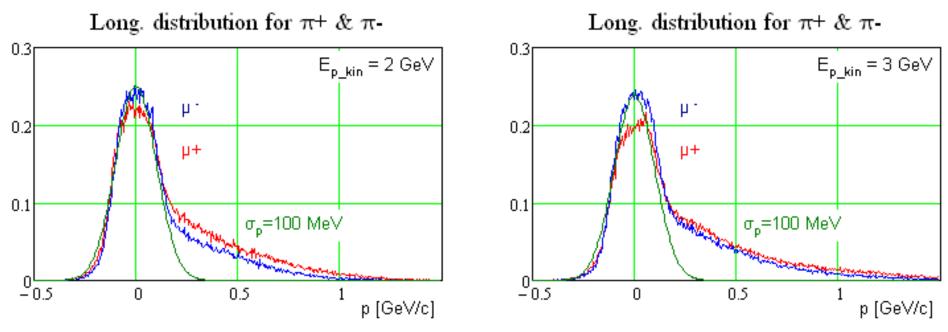

 - $\mu^{-}A \rightarrow \mu^{+}A'$; $m^{-}A \rightarrow e+A'$; $m^{-}e^{-}(A) \rightarrow e^{-}e^{-}(A)$
 - Systematic study of radiative muon capture on nuclei.

Major types of experiments

- High energy, small repetition rate (~10-100 Hz, fast extraction from ring)
 - (g-2)_μ
- Small energy, high repetition rate (~1-10 MHz)
 - decays on a fly
 - Stopped muons: μ -to-e,
 - Ultimate requirements to a muon source:
 - Small energy, pc < 10-20 MeV (Ekin < 0.5 4 MeV) is desirable
 - Large flux ~10¹³ s⁻¹

Two Major Types of Muon Sources

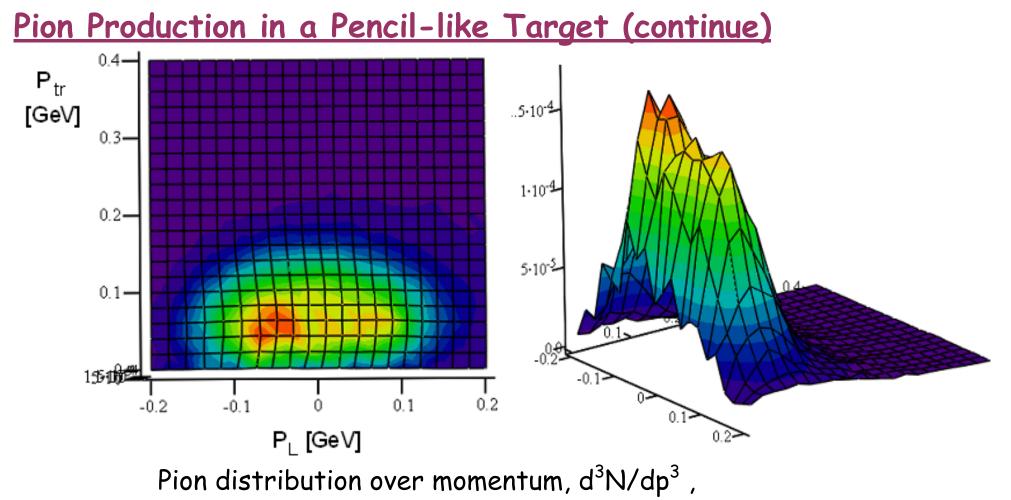

- Solenoid transport based
 - Has large acceptances both transverse and longitudinal
 - Limited manipulations with beam phase space
 - Expensive


- Isochronicity can be achieved in limited range of $\Delta p/p$ with helical channel
- General baseline based (large length to achieve good extinction of π^-)
 - Still requires decay solenoid to achieve high muon yield
 - Detector solenoid is required by experiment
 - All types of beam phase space manipulation are possible
 - Limited phase space reduces the muon flux
 - Inexpensive
 - Based on dipoles with edge focusing
 - FFAG presents one of possible choices for beam line optics

Particle Production Simulations

- **p** + $A \rightarrow \pi$ + ... $\rightarrow \mu$ + ν + ...
- There are no solid theoretical base for models of multiple particle production in hadron-nucleon interaction.
- There are a lot of experimental data on charged pion production
- MARS particle production model was tuned to recent measurements of HARP collaboration
 - p = 2, 3, 8 GeV/c
 - Two HARP groups have published different results based on same measurements
 - Difference for π⁻ is not significant

Pion Production in a Pencil-like Target


Pion longitudinal distribution function $(df/dp_{||})/E_{p_{kin}} [c/GeV^2]$ Target - nickel cylinder, L=10 cm, r=0.4 cm; no magnetic field Total production per unit energy of incoming protons

Ekin=2 GeV: forward 5.3% p_GeV⁻¹; backward - 2.9% p_GeV⁻¹

Ekin=3 GeV: forward 6.3% p_GeV⁻¹; backward - 2.8% p_GeV⁻¹

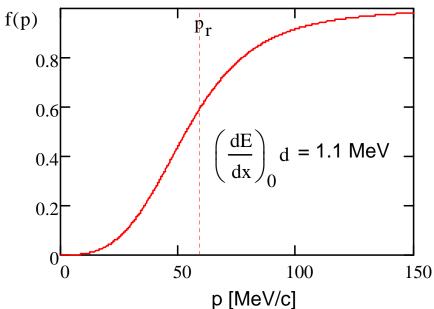
Longitudinal pion distribution is close to the Gaussian one, σ_p ≈ 100 MeV/c
 Central part of distribution has weak dependence on the incoming proton energy in the range [1-8] GeV

High energy tail grows with proton energy

Nickel cylinder, L = 10 cm, r = 0.4 cm; no magnetic field

Distribution function approaches zero due to particle deceleration at the target surface

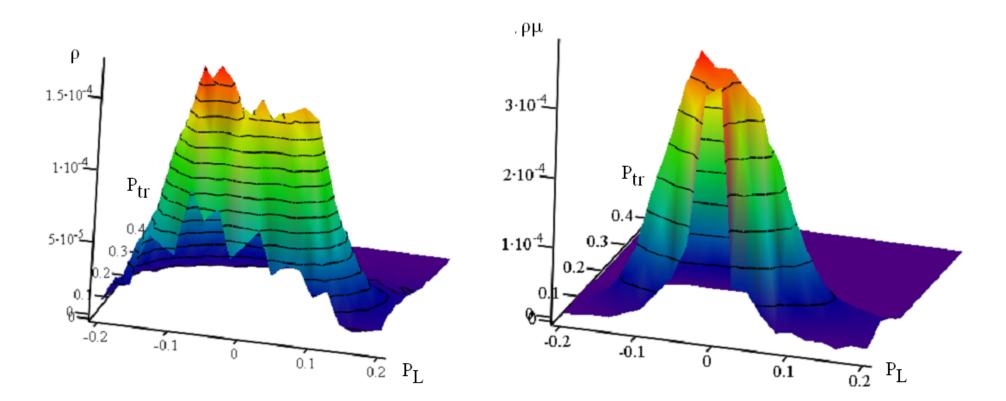
Pion Deceleration due to Ionization Loss


For $\gamma \beta \in [0.1, 1]$ one can write $\frac{dE}{dx} \approx \frac{1}{\beta^2} \left(\frac{dE}{dx}\right)_0^{-1}$ For non-relativistic case $E = m_\pi c^2 \beta^2 / 2 \Rightarrow p_{fin}^{-4} \approx p_{in}^{-4} - 4m_\pi^{-3} c^2 \left(\frac{dE}{dx}\right)_0^{-1} L$ Distribution function change is: $f(p_{fin}) = \frac{f(p_{in})}{dp_{fin} / dp_{in}}$

Combining one obtains:

$$f'(p_{fin}) \propto p_{fin}^{3} / (p_{fin}^{4} + p_{r}^{4})^{3/4}$$

where: $p_r \approx \sqrt[4]{4m_{\pi}^3 c^2 L (dE / dx)_0 / c}$


p_r has comparatively weak
dependence on medium properties $(dE/dx)_0 \sim 1.6 \text{ MeV/(g/cm}^2)$; *p_r* ≈ 1 MeV/c for L ≈ 1 mm

Muon distribution over momentum

- After decay a muon inherits the original pion momentum with Δp correction depending on the angle of outgoing neutrino, Δp_{cm} =29.8 MeV/c
- For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p

 \Rightarrow Momentum spread in $\mu\text{-beam}$ is smaller than in $\pi\text{-beam}$

Phase Density and Emittance of Muon Beam

Pions

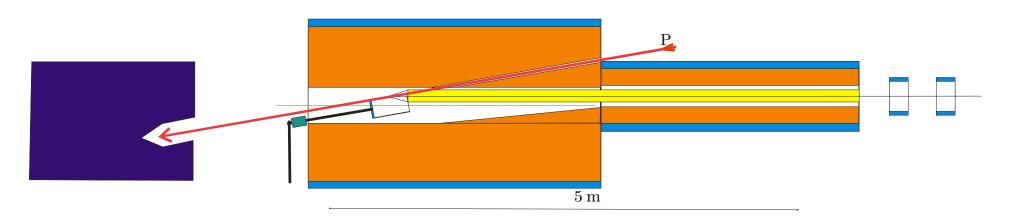
For short target, $L_{targ} < F$, (antiproton source)

$$\beta_{opt}^* \approx \frac{L_{targ}}{6} \implies \mathcal{E} \approx \frac{L_{targ}}{6} \sigma_{\theta}^2$$

- For small energy pions this approximation does not work, i.e $L_{targ} \ge \beta$
 - In this case

•
$$\varepsilon \approx \beta \sigma_{\theta}^{2}$$
 where $\beta = \frac{2pc}{eB}$

• and the beam emittance does not depend on the target length

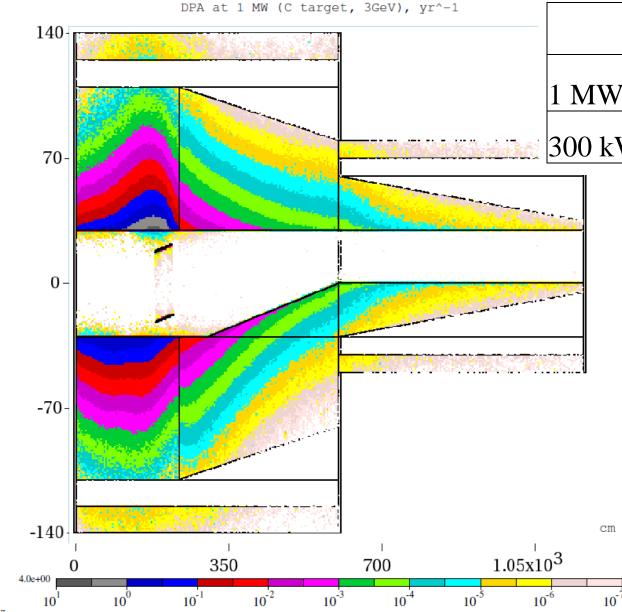

⇒ Phase density of pions grows with the magnetic field

Muons

- To reduce emittance growth due to pion decays the pions are transported in a solenoidal magnetic field
- Pions are produced in the solenoid center \$\Rightarrow\$ they have small angular momentum
- Pion decays have little effect on the angular momentum and the beam emittance
 Phase density of the muons is proportional to pion density and, consequently,
 - ⇒ the number of muons in a given phase space grows with magnetic field
 - ⇒ and muons do not have x-y correlations after exiting the solenoid

Target and Target Cooling

- Optimal target length should be ~1.5 of nuclear interaction length \Rightarrow i.e.: carbon ~60 cm: tantalum ~15 cm
- The beam leaves ~10% of its energy in the target;
- For 1 MW beam power the power left in the target is ~ 100 kW
- Large beam power prohibits usage of pencil-like target
 - Heat cannot be removed from pencil target: dP/dS ≥ 2 kW/cm² for R~0.5cm
 - Mercury stream is another possibility but it has significant problems with safety. Therefore it was not considered.
- Cylindrical rotating target looks as the most promising choice
 - Carbon (graphite) and tantalum targets were considered
 - Tantalum or any other high Z target has a problem with heating



Target cooling

- Rotating cylinder is cooled by the black body radiation
 - PSI uses a rotating graphite target at 1 MW beam power
 - Tantalum, R=10 cm, d=0.5 cm, L=15 cm, 400 rev/min
 - $T \approx 3000$ K (melting T = 3270 K), $\Delta T \approx 50$ C
 - Graphite (C), R=10 cm, d=0.5 cm, L=40 cm, 60 rev/min
 - T \approx 1800 K (melting T = 3270 K), $\Delta T \approx 50$ C
 - For graphite temperature looks OK but we still have to address
 - \Rightarrow Bearing lifetime under radiation (rotation)
- Relative to the pulsed beam the CW beam drastically reduces stress in target

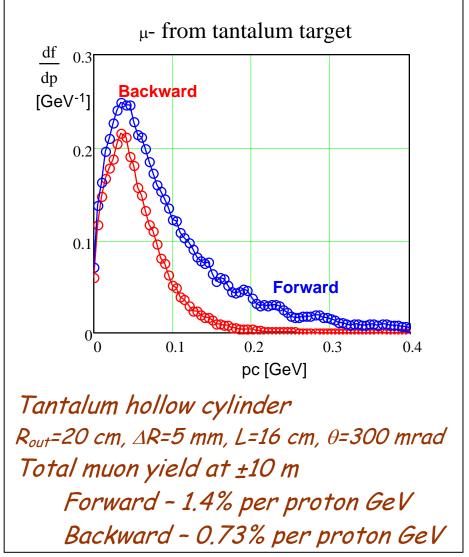
Effects of radiation

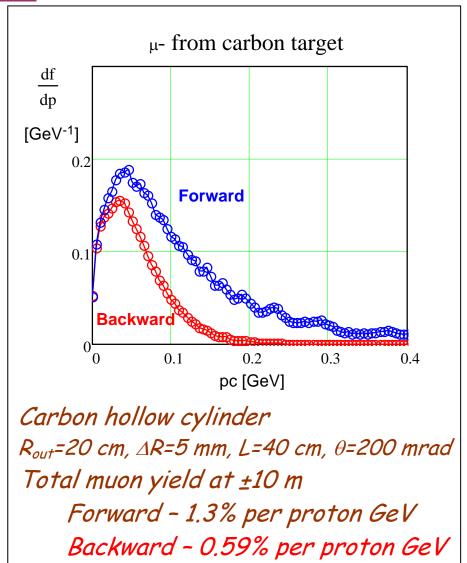
cm

Shielding estimate

C[t] / W[t] /Rmax [cm]

		C target	Ta target
	1 MW	140/80 (110)	180/100 (125)
3-61	300 kW	100/55 (95)	110/65 (100)

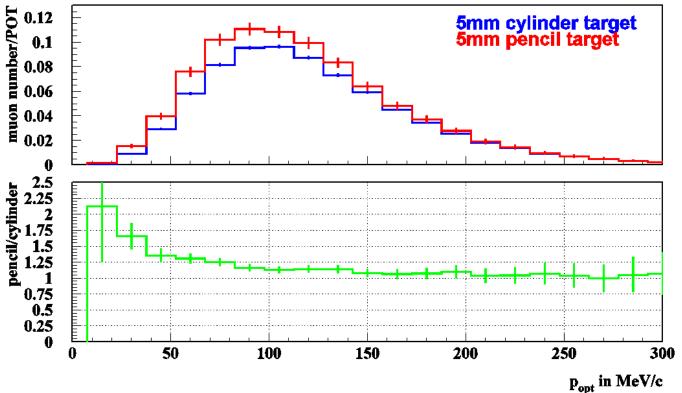

This preliminary absorber design satisfies typical requirements for SC coils


- peak DPA 10⁻⁵ year⁻¹)
- power density (3 μ W/g)
- absorbed dose 60 kGy/yr
- Dynamic heat load is 10 W

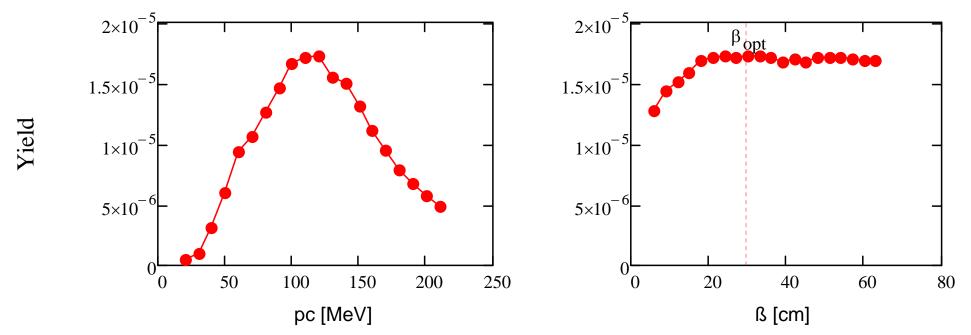
Transition from 25 kW of μ -to-e to 1 MW increases the shield radius from ~80 cm 110 cm => B = 5 T \rightarrow 3 T for the same stored energy

Muon Task Force, Valeri Lebedev

Muon Yield from Cylindrical Target



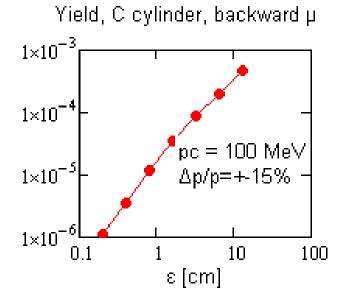
Yield per 1 GeV of proton energy: pc=3 GeV/ ($E_{kin}=2.2$ GeV), $\sigma_x = \sigma_y = 1 \text{ mm} - parallel beam, proton multiple scattering unaccountedSmall difference between forward and backward muons for Pc<50 MeV</td>For pc<120 MeV a weak dependence on <math>E_{kin_prot}$ for $E_{kin_prot} \in [1, 8]$ GeV/cMuon Task Force, Valeri Lebedev

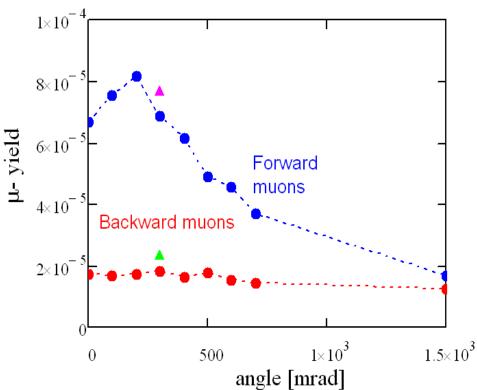

Muon Yield from Cylindrical Target (continue)

- For pc < 120 MeV the carbon target has smaller yield but</p>
 - Less problems with cooling due to larger length
 - It also makes less neutrons
- Compared to a pencil x10⁻³ like target a hollow cylinder target has smaller muon yield
 - But it allows one to use much larger beam power
- Beam damp inside solenoid would be a formidable problem therefore below we assume:
 - Backward muons
 - Carbon target

Muon Yield into a Beamline with Finite Acceptance

- In some applications beam transport in a beam line can be desirable
- It allows
 - Isochronous transport preventing bunch lengthening
 - but it significantly reduces the acceptance and momentum spread
- Below we assume that the beam line limits maximum acceptance and momentum spread to $\varepsilon \approx 0.3$ -3 cm, $\Delta p/p \approx \pm 0.15$




Graphite cylind. target, backward muons, $p_{prot}=2 \text{ GeV/c}$, $\varepsilon_x=\varepsilon_y=1 \text{ cm}$, $\Delta p/p=\pm0.15$, $\theta=200 \text{ mrad}$, B=2.5TFor small emittance the dependence of muon yield on the β -function is weak Strong suppression of small energy muons (pc<50 MeV) by deceleration in medium

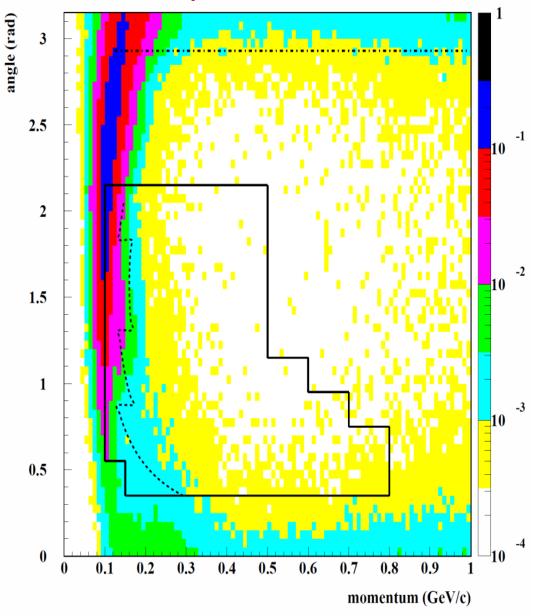
Muon Task Force, Valeri Lebedev

Muon Yield into a Beamline with Finite Acceptance (continue)

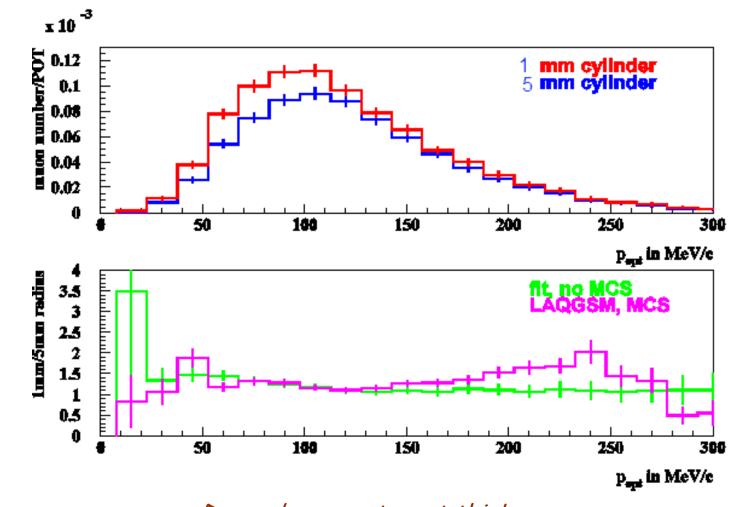
- Absence of x-y correlations after beam exit from magnetic field requires axial symmetric exit from solenoid ⇒ i.e. the beam center has to coincide with solenoid axis
- Yield is proportional to B_{target}
 - 2.5 T \rightarrow 5 T would double the yield
- Yield is $\propto \Delta p/p$ (for $\Delta p/p \ll 1$)
 Yield is $\propto \epsilon^{1.5}$

Dependence of muon yield on the target angle relative to magnetic field for carbon target into the following phase space: $\varepsilon_x = \varepsilon_y = 1 \text{ cm}$, $\Delta p/p = \pm 15\%$, $p_{prot} = 3 \text{ GeV/c}$, $(E_{kin} = 2.21 \text{ GeV})$ Optimal momenta are: 100 MeV/c for backward and 200 MeV/c for forward muons Triangles show results for tantalum target

Capturing the beam in a beam line reduces the muon flux by about 20 - 50 times


Muon Task Force, Valeri Lebedev

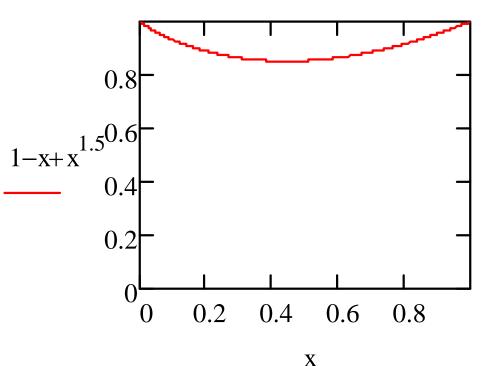
<u>Muon Yield into the μ -to-e solenoidal transport</u>


- \blacksquare μ -to-e acceptance simulation
 - Acceptance is defined to be the number of negative muons, as a fraction of the number of negative pions produced in the target, that reach the end of transport solenoid channel

Convolution of acceptance with muon production yields

Eproton_kin	Total yield	Yield per GeV
[GeV]		of Ekin_proton
1		
2.205	2.73·10 ⁻³	1.24·10 ⁻³
7.117	7.93·10 ⁻³	1.11.10-3

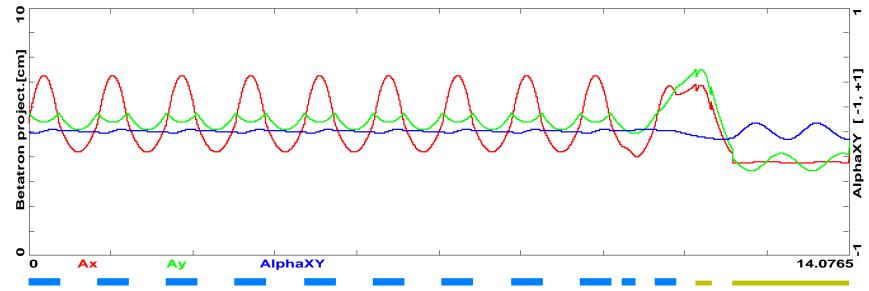
Making slow muons



Dependence on target thickness;
10 m decay channel, 2.5 Tesla, E=3 cm, 300 mrad angle, backward direction.
Current model does not take into account scattering of primary proton beam in target.

It will reduce dependence on the target radius

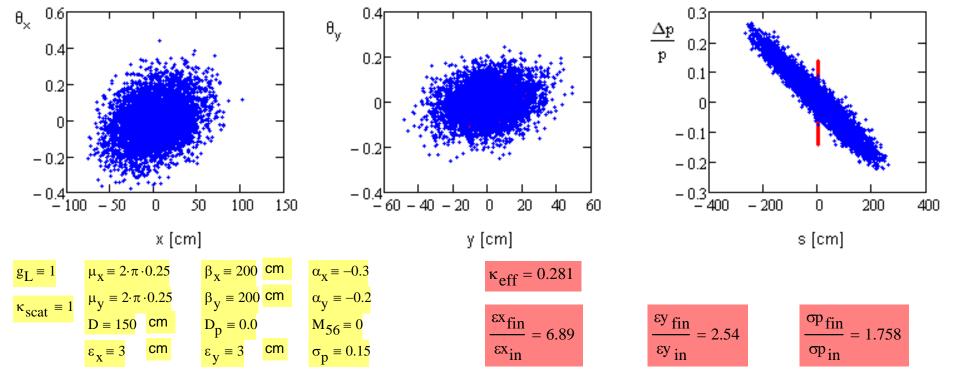
<u>Multiple scattering of protons in the target</u>


- Multiple scattering limits the thickness of cylindrical target to a few millimeters
- Optimal target thickness is weakly affected by its material
 - Heavy target has larger scattering but is shorter
 - It has approximately the same overall effect on the beam envelope growth due to multiple scattering
- Small proton beam emittance in Project X allows some reduction of multiple scattering effects
 - the beam is focused to the small spot at the target end

Beam transport in Helical Transport Line

- If isochronicity of beam transport is required then the beam transport in a "standard" line is the only choice
- The line may consist of downward spiral
 - It is matched to the production and detector solenoids with two dipoles and one or two solenoids at each end
- Toy example
 - One revolution includes 4 dipole magnets: B=5 kG (Pc=50 MeV), L=52.3 cm, R=33.3 cm, gap 13 cm, good field region width: ±15 cm
 - The line acceptance 0.41 cm; Momentum spread ±0.15, it descends with angle of 2.591 deg, step of the helix is 23.973 cm

Fri Jul 29 23:06:19 2011 OptiM - MAIN: - C:\VAL\Optics\Project X\Mu2e\microtron.opt

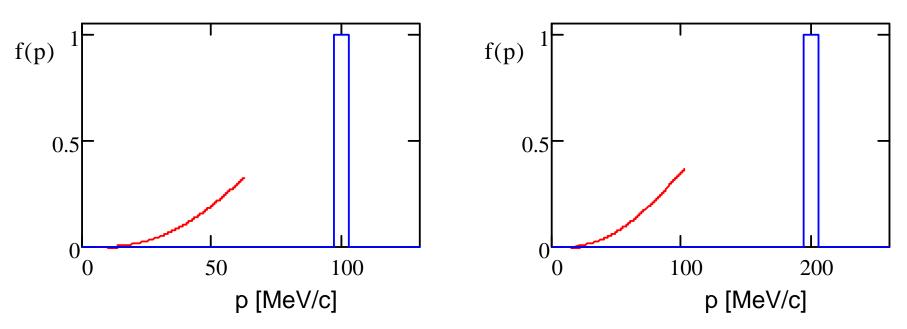

Betatron beam envelopes for helix and match to the detector solenoid. Acceptance 0.41 cm

Beam transport limitations

- To achieve the yield of $\sim 10^{-4}$ we need to have a line with acceptance
 - of ~3 cm (backward muons from carbon target)
 - Similarity of optics yields: $\epsilon \propto a \propto \beta_{x,y} \propto R_o$
 - Isochronicity requires soft focusing, $Q_x \sim 1$
 - \bullet Magnetic fields are reduced with increase of R_{\circ} making magnet price affordable
 - Total length and number of turns is determined by required pion extinction (~70 m for 50 MeV/c and extinction of 10⁻¹⁴)

Possibilities with Deceleration and Degrading

- Deceleration in electro-magnetic structure results in the adiabatic antidumping, with consequential 6D emittance growth $\propto p^{-3}$, i.e. 8 times for every factor of 2 in momentum
- Deceleration in the material looks much better at large $p (p \ge m_{\mu})$ but behaves the same way ($\propto p^{-3}$) for non-relativistic particles
 - even worse than it if multiple scattering is important (large $\beta_{x,y}$ at absorber)
 - Redistribution of damping decrements in realistic simulation partially helps but does not address the problem



Muon Task Force, Valeri Lebedev

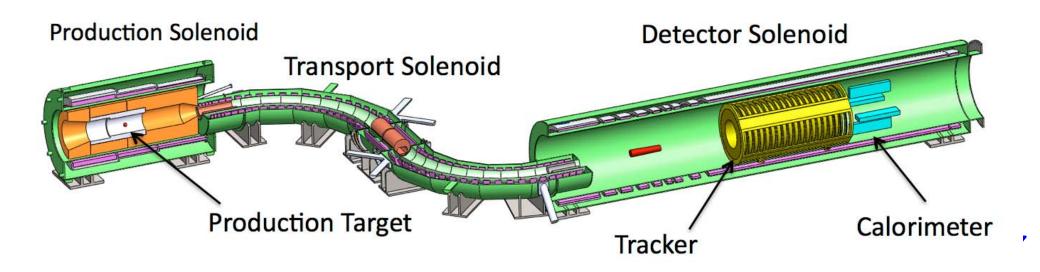
Deceleration (Degrading) after Ionization Cooling

Ionization cooling looks rather hypothetical possibility because:

- In difference to the muon collider the CW operation is required
 - It makes the cooling much more difficult and presently hardly feasible
- Cost prohibitive
- Even if the cooling problem is solved at pc = 100 200 MeV the deceleration to low energy is quite ineffective

Degrading of the rectangular distribution with ±3% momentum spread The ionization cooling graded with energy looks even more exotic

Conclusions


1 MW target in a few Tesla solenoidal field is feasible

- Graphite rotating cylinder cooled by the black-body radiation
- Loss of efficiency ~20% relative to a pencil like target (@ pc~100 MeV)
- Radiation shielding: $R \approx 80$ cm (for μ -to-e) $\rightarrow R \approx 110$ cm
 - \Rightarrow Smaller B if the same energy is stored in the field;
 - Magnetic field change: $B \propto R^{-3/2} \approx (80/110)^{3/2} \approx 0.6$
 - $_{\odot}$ overall loss of muon yield is smaller than factor of 2
 - \circ ~ 20 times more muons than present Mu2e (1 MW, 1 3 GeV)
- Muon yield per unit power weakly depends on proton energy [1-8 GeV]
 - Only ~15% reduction if the energy is reduced from 2.2 to 1 GeV
- Beam line option
 - Creates wide possibilities for the phase space manipulations
 - Isochronicity of beam transport
 - Muon flux reduction by more than an order of magnitude
 - Decelerating or degrading of muons does not look promising
 - Ionization cooling of muon is presently hardly feasible
 - Requirement to have only low energy muons for stopping in a thin target (pc<<100 MeV) results in drastic reduction of muon flux

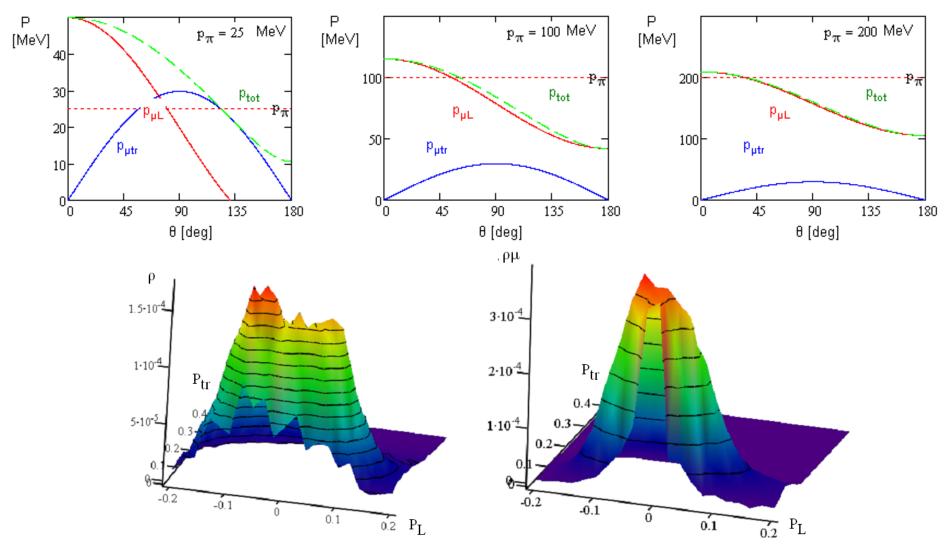
Backup Slides

<u>Present μ-to-e</u>

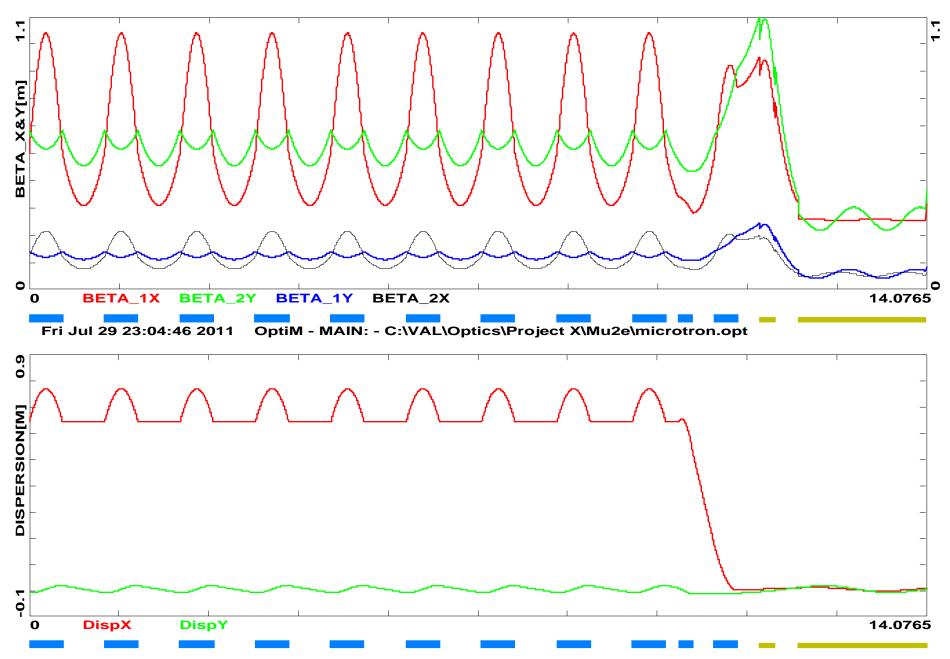
- Conversion 2.1.10⁻³ ($dN_p/dt=2.4.10^{13} s^{-1}$, P=25 kW, $dN_\mu/dt=5.10^{10} s^{-1}$)
- Extinction $<10^{-10}$ (sensitivity $6 \cdot 10^{-17}$ (90% C.L.))
- Target (gold, L~16 cm, r=0.5 cm, water cooled)
 - Total power 25 kW
 - Power left in the target 2 kW
- Secondary target
 - 17 Al discs, 0.2 mm thick, 5 cm apart, tapered radii r_d = 8.3 \rightarrow 6.53 cm
- Magnetic fields
 - Production solenoid: 5T -> 2.5 T, internal radius 0.75 m (reflection of muons)
 - Transport solenoid 2 T
 - Detector solenoid : 2T -> 1T (reflection of electrons with negative p_{||})

<u>Major Requirements to a New Generation μ -to-e Experiment[†]</u>

- ~100 times better than μ-to-e
 - single event sensitivity $2 \cdot 10^{-19}$ (or $6 \cdot 10^{-19}$ at 90% CL)
 - \Rightarrow 5.10¹⁸ muons: 2 years of 2.10⁷ s each
 - \Rightarrow 5.10¹² muons/s
 - Pc < 20 MeV i.e. Ekin<1.9 MeV (stopped in 0.4 mm Al foil)
 - Extinction <10⁻¹⁴ for pions; no antiprotons
 - Short pulse: t < 10 ns</p>
 - Detector is located underground (≥12 m)
- Short pulse and very good extinction imply that the beam transport has to be in an isochronous beam line
 - Drastic reduction of transverse and longitudinal acceptances


 \Rightarrow 1 MW Project X power should be helpful

Limitation of maximum energy to <1 MeV points out to the muon deceleration as a possible choice


† Bernstein & Prebys, July 26, 2011

Muon distribution over momentum

- After decay a muon inherits the original pion momentum with Δp correction depending on the angle of outgoing neutrino, Δp_{cm} =29.8 MeV/c
- For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p \Rightarrow Momentum spread in μ -beam is smaller than in π -beam

4D beta-functions (top) and dispersions (bottom) for helix and match to the detector solenoid

Muon Task Force, Valeri Lebedev