Fermilab Dus. Department of Science

Mu2e Experiment

Mete Yucel on behalf of the Mu2e Collaboration Users Meeting 2021 8/3/2021

- xkdc comics

Motivation - What is CLFV ?

NNN Y

CLFV (Charged Lepton Flavor Violation)

- Quarks mix, neutrinos mix, why don't we observe charged leptons mixing?
- Charged lepton flavor is not conserved.
 - As neutrino masses indicate.
- Let's look at SM process; $\mu^- \to e^-$ Let's look at BR result for this process

 $\mathscr{B}(\mu^{-}\mathsf{AI} \rightarrow e^{-}\mathsf{AI}) \sim \mathcal{O} \ 10^{-52}$

Heavily suppressed in SM, perfect for searching for new physics !!!

 ν_{μ}

W

W. Marciano, T. Mori, M. Roney; <u>https://doi.org/10.1146/annurev.nucl.58.110707.171126</u>

Searching for CLFV in the muon

sector;

Experiment	Institute	Process	
MEG II	PSI	$\mu^{\pm} ightarrow e^{\pm} + \gamma$	
Mu2e	FNAL	$\mu^- + N \to e^- + N$	
COMET	JPARC	$\mu^- + N \to e^- + N$	
МиЗе	PSI	$\mu^{\pm} \rightarrow e^{\pm} + e^{+} + e^{-}$	

Mu2e focuses on the neutrino-less conversion of the muon in the presence of Al nucleus.

 ν_e

Motivation - What mass scale(Λ) Mu2e probes ?

A. De Gouvea and P. Vogel; arXiv:1303.4097

Motivation - Why is Mu2e unique?

- Mu2e probes Λ (mass scale) up to 10^4 TeV.
- <u>Advantage</u> over collider experiments on probing rare process;
 - Free of SM backgrounds.
 - Intense muon beams for high statistics.
 - High sensitivity to couplings.

Mu2e signal

- Physics signal properties;
 - Coherent electron conversion.
 - Little energy lost to;
 - μ atomic binding energy $E_b = 0.48$ MeV.
 - Nuclear recoil $E_R = 0.21$ MeV.
 - No neutrinos are produced.
 - Monoenergetic e^- is 104.97 MeV.

Coherent electron conversion with Al

$$u^- + {}^{27}Al \to e^- + {}^{27}Al$$

$$E_{e^-} = M_{\mu^-} - E_b - E_{recoil} = 104.97 \text{ MeV}$$

Conversion rate

$$R_{\mu e} = \frac{\Gamma(\mu^- N \to e^- N)}{\Gamma(\mu^- N \to All \ captures)}$$

Mu2e goal = 3×10^{-17} SES

 $\times 10^4$ improvement over SINDRUM-II

Backgrounds - DIO

• Decay In Orbit(DIO).

Design principles

How to get 10^4 improvement over SINDRUM II & SES 3×10^{-17}

1.High intensity pulsed muon beam.

- High statistics.
- Introduces beam related backgrounds !!!
 2.High resolution on the momentum.
- Separation of 105 MeV/c conversion e^- from DIO e^- tail.
- Low mass straw drift detector with 180 keV/c resolution for 105 MeV/c e⁻.
- Couple with EM calorimeter to complement tracker.
- 3.Background suppression of <1 event for the experiment.
- Blind to low momentum particles.
- Event window separation with pulsed muon beam.
- Cosmic ray veto.

Beam related bg;

- π/μ decay in flight
- Radiative pion capture
- Antiproton annihilation

Cosmics;

- 1 conversion like e^- per day.
 - μ misidentified as e^-
 - Decay in flight
 - Interaction with detector material
- 99.99% veto efficiency is needed !

Live Event Window

Background suppression: Radiative Pion Capture + other beam related bg

😤 Fermilab

μ Mu2e Solenoids + Cosmic Ray Veto(CRV) + Shielding **NbTi Superconducting Magnets** 8 GeV Proton Production beam Solenoid 2.5 (4.6 1 CRV **Production Target** TSu

Cosmic Ray Veto covers all of DS and some of TS

œ

μ Mu2e Solenoids + Cosmic Ray Veto(CRV) + Shielding NbTi Superconducting Magnets 8 GeV Proton Production Detector 1 T beam Solenoid Solenoid 2.5 ransport (4.6 T Solenoid 2 T Calorimeter **Production Target** Tracker Muon TSu **Stopping Target**

Cosmic Ray Veto covers all of DS and some of TS

œ

Solenoids - progress

15 8/3/2021 Mete Yucel | Mu2e Experiment - Users Meeting 2021

Tracker

Background suppression: DIO

- Main detection element of Mu2e.
- Low mass tracker using straw drift tubes running ArCO2(80/20).
- Tracker kept 15 psid with solenoid.
- 25 μm Tungsten wire as the anode.
- 21600 x 5 mm OD metalized 15 μm thick walled Mylar straws;
 - Inner coat provides cathode
 - Outer coat provides shielding and reduces leaks.
- Highly segmented -> 36 planes -> each made from 6 panels.
- Momentum resolution < 180 keV/c.

21600 x straws

Ø5.00

Double layered 96 per tracker panel

Mu2e

Tracker - progress

- 120/240 tracker panels are produced.
- 6/36 planes produced.
- Vertical slice test(a test of <u>complete tracker plane</u> with <u>production electronics</u>) of the first plane has been ongoing since Jan-2021.
- Test in vertical orientation will be conducted soon.

Cosmic track reconstruction

EM Calorimeter

- 1348 Csl crystals;
 - 3.4x3.4 cm surface area.
 - 20 cm in length.
- Readout by SiPMs.
- Annular design like tracker with hole in the middle.
- Distance between two disks = 70 cm;
 - half wavelength of electron's path.
- Provides;
 - Seed to complement tracking.
 - 0.5 ns time resolution.
 - particle ID, 10% energy resolution.
 - Position, 1 cm spatial resolution.
 - Prototype using 51 Csl crystals & 102 SiPMs
 - 5.4% at 100 MeV energy resolution
 - Timing resolution < 150 ps

辈 Fermilab

Calorimeter - progress

- Production of Csl crystals are finished.
- FEE production finished, QC in progress.
- 3950 SiPMs are completed and accepted with 1.2% rejection rate.
- DIRAC installed on Module-0 May 11 and tested.

Module 0 with DIRAC and readout

Cosmic Ray Veto

Background suppression: Cosmics

- Unvetoed cosmic background ~= 1 bg event per day.
- Covers all DS and part of TS.
- 337 m² surface area.
- Polystyrene scintillators coated with TiO2 sandwiched between Al absorbers.
- 4 overlapping layers of scintillators.
 - 3 layer coincidence veto.
- Readout through WLS fibers & 2x2 mm² SiPMs on both ends.

CRV - progress

- 100% SiPMs tested, 99% yield.
- 1760/2688 di-counters(58%) produced.
- 52/83 production modules(63%) are completed.

CRV module vacuum bagged

Side modules

Module testing ongoing

Vertical modules

Major backgrounds summary

	Process	Estimated yield(events)
Intrinsic	Muon DIO	$0.144 \pm 0.028(\text{stat}) \pm 0.11(\text{syst})$
Beam related	RPC	0.021 ± 0.001 (stat) ± 0.002 (syst)
prompt Other	Antiproton induced	$0.040 \pm 0.001(\text{stat}) \pm 0.020(\text{syst})$
	Cosmic ray induced	$0.209 \pm 0.022(\text{stat}) \pm 0.055(\text{syst})$
	TOTAL	0.41 ± 0.13 (stat+syst)

Sensitivity

Future experiments

- Mu2e-II.
- EDM experiments.
 - μ, p probes dark matter/ dark energy.
- Muonium/Dimuonium.
- PRISM.
 - Slow muons to supply new CLFV programs.

Not the topic of this talk

Summary

- Mu2e will improve current limit on conversion rate by 10^4 @ SES = 3×10^{-17} .
- Will probe mass scales up to 10^4 TeV.
- Current schedule;
 - Installation and commissioning starting in 2022.
 - Start physics data taking in 2025.
 - $\times 1000$ improvement over current limit by 2026.
 - LBNF/PIP-II shutdown.
 - $\times\,10000$ improvement over current limit by the end of the decade.
- Great progress so far from all subsystems.
- Next 2 years will see a big effort on building and commissioning the detector.

Thanks for listening

BACKUP

Tracker hole in the middle design

 Center(<400 mm) is empty to make the detector blind against most DIO electrons, beam artifacts.

Cosmic run with tracker panel

- Data was taken May 2020 with production tracker panel.
- DOCA(distance of closes approach) is determined to compute drift time.

Targets

Mu2e

e

- Production target
 - Tungsten
 - Suspended on spokes
 - Minimize scattering & π absorption
 - 1400 msec beam cycles
 - 630 W power absorption
 - 2000 K temperature
 - Operate 1 year

- Stopping target
 - 37 high purity Al disks
 - Each 100 µm thick, 150 mm OD, 40 mm ID.
 - 740 mm in length.
 - Suspended with 76 μm diameter gold plated W wires.

Beam delivery

- 8 GeV protons are transferred to DR(delivery ring) from recycler.
- 2.5 MHz bunches.
- Protons are extracted from DR and sent to Mu2e in 1695 ns intervals.
- 3.9×10^7 POT per bunch.
- 3.6x 10^{20} POT total

Muon searches history

CLFV processes sensitivity to BSM

arXiv:0909.1333[hep-ph]

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{ m CP}\left(B ightarrow X_s\gamma ight)$	*	*	*	***	***	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^\star\mu^+\mu^-)$	*	*	*	*	*	*	?
$B\to K^{(\star)}\nu\bar\nu$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L ightarrow \pi^0 u ar u$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

A = Discovery Sensitivity

Looking forward in muon searches

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

CLFV experimental limits

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$<4.2\times10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} ightarrow e^- \mathrm{Pb}$ †	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} ightarrow e^{+}\mathrm{Ca}^{*}$ [†]	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+e^- ightarrow \mu^-e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$ au ightarrow e\gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$ au o \mu \gamma$	$<4.4\times10^{-8}$	90%	BaBar	2010
$\tau \to eee$	$<2.7\times10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$<2.1\times10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$ au o ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 ightarrow \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 o \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 ightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ ightarrow \pi^+ \mu^+ e^-$	$<1.3\times10^{-11}$	90%	BNL E865	2005
$J/\psi ightarrow \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi ightarrow au \mu$	$< 2.0 imes 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 imes 10^{-5}$	90%	BaBar	2008
$B^0 o au \mu$	$< 2.2 imes 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 imes 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \rightarrow \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h ightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017

L. Calibbi and G. Signorelli; arXiv:1709.00294v2

Tracker Frame

