Comments on Optical Photometry and the Generation of Standard Stars

Arlo U. Landolt
Department of Physics \& Astronomy
Louisiana State University

landolt@phys.Isu.edu

Abstract

Comments will be made on situations encountered in the process of observational optical photometry and the establishing of standard star sequences.

Prologue

Long term goals for long term needs:

- standards for intensity and color information
- help calibrate new generations of equipment
- looking outward and inward

Introduction

- memory and continuity Weaver
Hearnshaw
Straizys
Bessell
Sterken
- goal regarding tie-ins

Setting the Stage

- photometric characteristics a la Johnson
- a role for spectra

Photometry the Old Way

- photography calibrated photoelectrically
- toddler steps
- learning to walk

Photoelectric Photometry at the Celestial Equator

- community's realization of need
- identifying potential candidate stars
- initial standard sequences

Observational Problems

- the environment
- filters and detectors
- cantankerous problems

The CCD Era

- rules for acquiring data
- taking measure of the data
- do the results make sense?

Results Over Time

- standards as a function of time
- standard star characteristics
- photometric accuracies

Number of Standards as a Function of Time

Reference	\# of stars	Filters		Sky Location
	104	UBV		northern hemisphere Johnson (1963)
Landolt (1973)	658	UBV		celestial equator
Cousins (1973)	255	UBV		E and F regions
Graham (1982)	102	UBVRI	E regions	
Landolt (1983)	223	UBVRI		celestial equator
Menzies et al. (1991)	212	UBVRI	celestial equator	
Landolt (1992)	526	UBVRI	celestial equator	
Landolt (2007)	109	UBVRI		-50 degree fields
Landolt (2009)	595	UBVRI	celestial equator	
Landolt (2012)	hundreds	UBVRI	+45 degree fields	
Clem \& Landolt (2012)	$1000+$	UBVRI	celestial equator	

Summary of Landolt's Standard Star Efforts

Year of Publication	\# of Standards	$\underline{\text { Range in } V}$	$\underline{\text { Range in }(B-V)}$	Measures per $\boldsymbol{s t a r}$
1973	335	$10.5 \rightarrow 12.5$	$-0.25 \rightarrow+2.00$	11
1983	223	$7.0 \rightarrow 12.5$	$-0.30 \rightarrow+2.00$	20
1992	217	$11.5 \rightarrow 16.0$	$-0.30 \rightarrow+2.00$	29
2009	595	$8.9 \rightarrow 16.3$	$-0.35 \rightarrow+2.30$	24
2012 a	hundreds	$\sim 9.0 \rightarrow 16.0$	$\sim-0.30 \rightarrow+2.20$	~ 15
2012 b	$1000+$	$\sim 10.0 \rightarrow 16.0$	$\sim-0.30 \rightarrow+2.00$	$25+$
2012 c	$1000+$	$\sim 15.0 \rightarrow 20.0$	$\sim-0.30 \rightarrow+1.80$	$25+$

Photometric Accuracies

Mean Errors of a Single Observation

V	0.0153	0.0134	0.0160	0.0144
$B-V$	0.0159	0.0124	0.0195	0.0191
$U-B$	0.0250	0.0228	0.0439	0.0492
$V-R$		0.0090	0.0126	0.0115
$R-I$		0.0095	0.0182	0.0166
$V-I$		0.0116	0.0228	0.0207

Mean Errors of the Mean
$\underline{1973} \underline{1983} \underline{1992} \underline{2009}$
$0.0046 \quad 0.0029 \quad 0.0039 \quad 0.0036$
$0.0048 \quad 0.0027 \quad 0.0048 \quad 0.0051$
$0.0075 \quad 0.0050 \quad 0.0125 \quad 0.0143$
$0.0020 \quad 0.0031 \quad 0.0029$
$0.0021 \quad 0.0044 \quad 0.0040$
$0.0025 \quad 0.0055 \quad 0.0050$

Acknowledgments

Thanks to James Clem and Chris Sterken for comments

Support over the years by DARPA, AFOSR, STScl, and NSF

