Calibration and cross-calibration of the SNLS and SDSS supernova surveys

$\label{eq:marc_beta} \begin{array}{c} \mbox{Marc Betoule} \\ \mbox{SNLS collaboration, JLA collaboration, CFHT} \end{array}$

LPNHE

Fermilab, Apr. 2012

SNLS calibratio

Cross-calibration

Context and motivations

68.3%, 95.4%, 99.7% confidence contours FwCDM (Sullivan, 2011)

Cosmological constraint from type Ia SNe

- Most stringent constraints to date on the dark energy equation of state parameter $w = -1.021^{+0.078}_{-0.079}$.
- a \sim 2 improvement wrt CMB+BAO+H0

SNLS calibratio

Cross-calibration

Context and motivations

68.3%, 95.4%, 99.7% confidence contours FwCDM (Sullivan, 2011)

Cosmological constraint from type Ia SNe

- Most stringent constraints to date on the dark energy equation of state parameter $w = -1.021^{+0.078}_{-0.079}$.
- a \sim 2 improvement wrt CMB+BAO+H0

Photometric calibration is the main source of uncertainty

- $m \circ \sim 1\%$ reached in Regnault (2009)
- Need improvement for the final release

SNLS calibration

Cross-calibration

The type Ia SN Hubble diagram

- The luminosity of SNIae as a function of z: a precise photometry experiment (in average)
- Relative calibration between photometric bands and surveys
- 2 large similar surveys

Introduction			
0000	000000	00000	

Overview

Classic (star-based) calibration

- HST white dwarves as primary calibration source
- Transfer to in-situ tertiary standards

Introduction		
0000		

Overview

Classic (star-based) calibration

- HST white dwarves as primary calibration source
- Transfer to in-situ tertiary standards

Pushing this classic strategy

- Making the system redundant
- Shortening the calibration path
- Direct cross-calibration
- Cross-check of systematics

Introduction			
0000	000000	00000	0

Outline

Ö	0		h		

SNLS

Photometric survey at CFHT

- 3.6 m telescope
- 40 nights/year over 5 years
- 4 deep fields of the CFHTLS

${\sf Megaprime}/{\sf MegaCam}$

- 1 deg², 36 imes 2k imes 4.6k CCDs o 300Mpixels
- 4 photometric bands $g_M r_M i_M z_M$

	SNLS calibration		
0000	00000	00000	0

Step I: Mapping the instrument response

Twilight observations give wrong answers

- Mostly reflections in the optical path (ghosts)
- Any optical effect affecting differently parallel and isotrope illumination (Small angle scattering, optical distortions ...)
- Varying filters

Critical in the transfer of average calibration to $\ensuremath{\mathsf{SN}}$

- Landolts and other standards observed at specific positions
- SN uniformly dispatched

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

 $m_{ADU}(x, star) = m(x_0, star) + \delta zp(x)$

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Dithered observations of dense stellar fields

- 13 exposures
- Logarithmically increasing steps from 1.5' to $1/2 \ \mbox{deg}$
- 4-10 independent grid datasets /band
- \rightarrow measure a correction δzp to the twilight flat-field

Observation model

- $m(x_0) \sim 100000$ nuisance parameters
- $\delta zp \sim 100$ parameters

Intrinsic limitations

Expensive

- External observations
- $\bullet \ \sim 1/2$ night for all bands
- Photometric time

Finite number of stars

- Limited resolution
- Limited precision

- Perfect photometric conditions required
- Radial gradient $\sim 1\%$

	SNLS calibration		
0000	0000000	00000	

Results

Evaluating the impact of flat-fielding errors on the calibration

- $\bullet~$ Independent observations $\rightarrow~$ errors average out
- $\bullet\,$ After selection ~ 6 useable independent photometric corrections per band
- All epochs agree with rms < .3% in all bands

Step II: Anchoring to HST

Doubling the original path

- Uncertainty on the landolt to MegaCam transformation
- Direct observations of the CALSPEC Solar Analogs with MegaCam.

A small observation program

- 3 standards observed along with D3
- short observing group
- 4-5 nights / band at CFHT (5H)
- 5 mmag precision reached

Cross-calibration

Agreement between SA/BD+17 calibration

(mmag)	u	g	r	i2	z
dispersion between stars	27.5	5.7	5.7	0.5	4.3
dispersion between nights	12.3	4.7	6.1	5.4	11.7
offset	22.9	12.5	-8.6	-1.8	-2.9
uncertainty	14.4	4.0	5.2	4.4	7.5

Direct cross-calibration with the SDSS: a drastic shortcut

The observation program

- Original program includes 2 fields within the S82 (SDSS36, SDSS326) observed along with D1 and D4.
- Dithered observations
- Few epochs
- Completed in January 2011 by more numerous observations of D1/SDSS36

		Cross-calibration	
0000	000000	○●○○○	0

Measuring precise color transform

Betoule

		Cross-calibration	
0000	000000	00000	0

Checking passbands

		Cross-calibration	
0000	000000	00000	

Checking uniformity

- Detect a (small) flat-fielding problem (PT related) in S82 catalog
- Confirm that MegaCam flat-fielding is good at the 5 permil level

PARIS

SNLS calibratio

Checking calibration

Closing the loop

- 3 independant path
- Do agree within announced error bars

band	combined uncertainties
g	0.002
r	0.003
i2	0.003
z	0.006
	LPNHE

PARIS

			Conclusion
0000	000000	00000	•

Conclusion

Redundant path to the HST flux scale

- Robust assessment
- Precision better than 5 mmag achieved
- Uncertainty on the flux reference itself now dominates

Pushing a classic calibration strategy, with intrinsic limitations

- Competition between accuracy and lost observation time
- Flat-fielding is difficult
- Accuracy becomes problematic around the 5 mmag level

Lessons learned

- Star-based photometric flat-fielding has intrinsic limitations.
- But it avoids the very tricky task of figuring out what the photometry do actually measure.
- Transfer of the average calibration between 2 fields is comparatively easier than the flat-fielding.

Filter evolution

No sizeable filter evolution

- Color-terms between yearly catalogs
- Evolution below .001 per unit of g-i
- 1 order of magnitude smaller than the CFHT/REOSC discrepency

SNLS color diagrams

Betoule

Response uniformity: SNLS-SDSS

- Flat-field problem in S82 corrected
- Much better, but features remain
- Arguably attributatble to SDSS

Response uniformity: SNLS-SDSS

SDSS326