The Calar Alto Legacy Integral Field spectroscopy Area (CALIFA) survey

Bernd Husemann¹
S. F. Sánchez (PI)², D. Mast², R. García Benito²,
CALIFA collaboration

¹Leibniz-Institute for Astrophysics Potsdam (AIP)
²Instituto de Astrophysica de Andalucia (IAA)

2011 April 18
Outline

1. Survey Introduction
2. Astrometric and Spectrophotometric calibration
3. First results and data release
The idea of CALIFA

Legacy Survey of a large and representative sample of galaxies in the local Universe using optical integral field spectroscopy
The idea of CALIFA

Legacy Survey of a large and representative sample of galaxies in the local Universe using **optical integral field spectroscopy**

- 250 dark nights in 3 years at Calar Alto Observatory (Spain)
 - ~2.5 Million Euros in telescope time
 - Competitive review process
The idea of CALIFA

Legacy Survey of a large and representative sample of galaxies in the local Universe using **optical integral field spectroscopy**

- 250 dark nights in 3 years at Calar Alto Observatory (Spain)
 - ~2.5 Million Euros in telescope time
 - Competitive review process
- Collaboration of 82 members in 13 countries
 - PI: S. F. Sánchez (IAA)
 - PS: J. Walcher (AIP)
 - Board (Chair: R. Kennicutt → P. Vilchez)
 - Mostly young researchers (~35 years)
- Project started on July 1st 2010
The PMAS integral field spectrograph

Potsdam Multi Aperture Spectrophotometer (PMAS)

- 3.5m telescope (Cassegrain focus)
- Optimized for 350nm-900nm
- High throughput ≤ 30%
- Exchangeable and rotatable grisms
- **2 integral field units (IFUs):**
 - **Lens Array**
 - 16×16 lenslets (0.5″ sampling)
 - **Pmas fiber PAcK (PPAK)**
 - coarse fiber bundle
 - ~ 1′ Field of View (FoV)

⇒ Among the largest IFU FoV’s
The PMAS integral field spectrograph

Potsdam Multi Aperture Spectrophotometer (PMAS)

- 3.5m telescope (Cassegrain focus)
- Optimized for 350nm-900nm
- High throughput $\leq 30\%$
- Exchangeable and rotatable grisms
- 2 integral field units (IFUs):
 - Lens Array
 - 16×16 lenslets (0.5″ sampling)
 - Pmas fiber PAcK (PPAK)
 - coarse fiber bundle
 - $\sim 1'$ Field of View (FoV)
 - Among the largest IFU FoV’s

PPAK fiber bundle IFU

- 331 science fibers
- 36 dedicated sky fibers
- 2.7″ diameter fibers
- 2/3 filling factor
Wavelength coverage for CALIFA

Two setups are used to cover the entire optical wavelength range:

- **Higher resolution** ⇒ Galaxy kinematics from Ca H+K region
- **Lower resolution** ⇒ Stellar population and ionised gas
The CALIFA galaxy sample

Mother sample is drawn from SDSS:

1. Diameter cuts: $45'' < D_{25} < 80'' \Rightarrow$ effective usage of FoV
2. Redshift cuts: $0.003 < z < 0.03 \Rightarrow$ excludes dwarf galaxies

987 galaxies within SDSS match these basic criterions

CALIFA will observe 600 galaxies!

Science drivers for CALIFA

- What is the origin of the observed galaxy diversity?
- What drives the bimodality in the galaxy population?
- How galaxies evolve with time? (secular vs. interactions)
- Nearby galaxies: “fossil records“ of the formation and evolution of galaxies
- Relations between galaxy morphology, stellar population, kinematics and the ionised gas
- What does AGN do to their host galaxies and vice versa?
- Of course, many more interesting stuff ...
Precedent spectroscopic surveys

Sloan Digital Sky Survey
- Single fibre spectra (3″)
- 1 Million galaxy spectra
- Median redshift at $z \sim 0.1$

Tremonti et al. 2004
Precedent spectroscopic surveys

Sloan Digital Sky Survey
- Single fibre spectra (3")
- 1 Million galaxy spectra
- Median redshift at $z \sim 0.1$

Previous IFS surveys
- **SAURON/ATLAS3D**
 - 72/\sim200 E-type galaxies
 - at $z < 0.01$ with limited FoV and spectral range
- **PINGS**
 - 12 L-type galaxies
 - at $z \sim 0.001$ but full galaxy covered (Mosaicking)
- **DiskMass**
 - 30 face-on spirals
 - kinematic weighting

Tremonti et al. 2004
Advantages over precedent spectroscopic surveys

- SDSS spectroscopy may cover the centre or the whole galaxy ⇒ Likely introducing aperture biases for most studies
- SAURON/ATLAS3D covers only the central area ($\leq 1R_{\text{eff}}$) Very narrow wavelength range limit optical diagnostics
Advantages over precedent spectroscopic surveys

- SDSS spectroscopy may cover the centre or the whole galaxy ⇒ Likely introducing aperture biases for most studies
- SAURON/ATLAS3D covers only the central area ($\leq 1R_{\text{eff}}$)
 Very narrow wavelength range limit optical diagnostics

CALIFA covers an entire galaxies in a certain redshift range!
Comparison of spectroscopic survey efficiencies

- CALIFA will contain more galaxies than any IFU survey before
- CALIFA will collect ~1 Million spectra (similar to SDSS)
Uniqueness of CALIFA

- **Large wavelength coverage**
 - Full optical emission-line diagnostic
 - Extended view on stellar populations
 - Suited to study galaxy kinematics

- **Spatial coverage and sampling**
 - Full optical size of galaxy covered
 - ~ 1 kpc projected spatial resolution

- **Large homogeneous sample:**
 - Statistics, classification, rare objects
 - Comparison studies of different types

- **Legacy survey!**
Challenges for CALIFA

- Amount of spectra is equivalent to SDSS
- New techniques to display and analyse 3D data required
- High degree of automatization for data reduction and analysis
- PMAS was not build for surveys, e.g. unstable due to flexures
 ⇒ Appropriate scheme for homogeneous survey calibration
- And many more....
What calibrations are required for CALIFA science?

1. Wavelength calibration
 - stellar population modelling
 - kinematic maps of galaxies

2. Relative spectrophotometry
 - stellar population modelling
 - emission-line ratio (ISM physics)
 - dust extinction (continuum or emission lines)

3. Absolute spectrophotometry
 - absolute star formation rates
 - stellar masses

4. Astrometry
 - relate spectra to a position on the sky (galaxy part)
 - matching ancillary photometry to CALIFA spectra
What calibrations are required for CALIFA science?

1. Wavelength calibration
 - stellar population modelling
 - kinematic maps of galaxies

2. Relative spectrophotometry
 - stellar population modelling
 - emission-line ratio (ISM physics)
 - dust extinction (continuum or emission lines)

3. Absolute spectrophotometry
 - absolute star formation rates
 - stellar masses

4. Astrometry
 - relate spectra to a position on the sky (galaxy part)
 - matching ancillary photometry to CALIFA spectra
What calibrations are required for CALIFA science?

1. Wavelength calibration
 - stellar population modelling
 - kinematic maps of galaxies

2. Relative spectrophotometry
 - stellar population modelling
 - emission-line ratio (ISM physics)
 - dust extinction (continuum or emission lines)

3. Absolute spectrophotometry
 - absolute star formation rates
 - stellar masses

4. Astrometry
 - relate spectra to a position on the sky (galaxy part)
 - matching ancillary photometry to CALIFA spectra
What calibrations are required for CALIFA science?

1. Wavelength calibration
 - stellar population modelling
 - kinematic maps of galaxies

2. Relative spectrophotometry
 - stellar population modelling
 - emission-line ratio (ISM physics)
 - dust extinction (continuum or emission lines)

3. Absolute spectrophotometry
 - absolute star formation rates
 - stellar masses

4. Astrometry
 - relate spectra to a position on the sky (galaxy part)
 - matching ancillary photometry to CALIFA spectra
IFU data reduction is still quite an ART!

Things to handle:
Cosmic rays → extraction → flexures → flat-fielding → vignetting → sky subtraction → wavelength and flux calibration → etc...
IFU data reduction is still quite an ART!

Things to handle:
- Cosmic rays → extraction → flexures → flat-fielding → vignetting → sky subtraction → wavelength and flux calibration → etc...

Will not bother you with a IFU data reduction lesson...
Dither pattern and image reconstruction

SDSS r band image

An individual PP AK pointing has a low weighting factor. 3 dither pointings allow image reconstruction (1′′) ⇒ Relies on accurately known dither offsets. Intrinsic spatial information still undersampled ⇒ Low precision for standard astrometry, i.e. galaxy centre.
Dither pattern and image reconstruction

- An individual PPAK pointing has a low filling factor
Dither pattern and image reconstruction

- An individual PPAK pointing has a low filling factor
- 3 dither pointings allow image reconstruction (1")
 ⇒ Relies on accurately known dither offsets
Dither pattern and image reconstruction

- An individual PPAK pointing has a low filling factor.
- 3 dither pointings allow image reconstruction (1″).
 ⇒ Relies on accurately known dither offsets.
- Intrinsic spatial information still undersampled.
 ⇒ Low precision for standard astrometry, i.e. galaxy centre.
Possible solution: Registering to SDSS images

How to properly register the CALIFA data to SDSS images?
Possible solution: Registering to SDSS images

How to properly register the CALIFA data to SDSS images?

1. Overlay the fiber pattern
Possible solution: Registering to SDSS images

How to properly register the CALIFA data to SDSS images?

1. Overlay the fiber pattern
2. Re-construct flux from SDSS images
Possible solution: Registering to SDSS images

How to properly register the CALIFA data to SDSS images?

1. Overlay the fiber pattern
2. Re-construct flux from SDSS images
3. Offset fiber pattern and compute
 \[\chi^2 = \sum_{i,j} \frac{(f_{ij}^{\text{CALIFA}} - f_{ij}^{\text{SDSS}})^2}{\sigma_{ij}^{\text{CALIFA}^2} + \sigma_{ij}^{\text{SDSS}^2}} \]
Possible solution: Registering to SDSS images

How to properly register the CALIFA data to SDSS images?

1. Overlay the fiber pattern
2. Reconstruct flux from SDSS images
3. Offset fiber pattern and compute $\chi^2 = \sum_{i,j} \frac{(f_{ij}^{\text{CALIFA}} - f_{ij}^{\text{SDSS}})^2}{\sigma_{ij}^{\text{CALIFA}}^2 + \sigma_{ij}^{\text{SDSS}}^2}$
4. Position can be estimated with sub-arcsec precision
Wavelength calibration

- Pretty standard using arc lamp frames obtained per objects
- Instrument flexures have to be corrected though

⇒ Checks on the data show an rms of 5-10 km/s as expected (V1200)
Spectrophotometric calibration scheme

- Spectrophotometric stars observed each night
- Atm. Extinction monitored at observatory (CAVEX)
- Mean extinction curve at Calar Alto is known

Spectrophotometric calibration scheme

- Spectrophotometric stars observed each night
- Atm. Extinction monitored at observatory (CAVEX)
- Mean extinction curve at Calar Alto is known

Remaining problems:
1. No simultaneous standard star observations
2. Standard star observations prone to aperture losses

⇒ photometric re-calibration!

Anchor the absolute photometry to SDSS

1. Extract 30″ aperture photometry in u, g, r, i from SDSS images

2. Synthesize g and r photometry from the corresponding CALIFA spectra

⇒ Photometry matching leads to a re-scaling factor
Photometric scale factor strongly variable within ±20% ⇒ expected! A MEAN instrumental sensitivity curve was used.
Photometric scale factor strongly variable within ±20%
⇒ expected! A MEAN instrumental sensitivity curve was used

Individual nights have a dispersion of only ±5% in the mean
Photometric scale factor strongly variable within ±20% ⇒ expected! A MEAN instrumental sensitivity curve was used

- Individual nights have a dispersion of only ±5% in the mean
- Time evolution modulated by the primary mirror reflectivity
Survey Introduction

Astrometric and Spectrophotometric calibration

First results and data release

Time evolution of internal photometry and colors

- Photometric scale factor strongly variable within ±20% ⇒ expected! A MEAN instrumental sensitivity curve was used
- Individual nights have a dispersion of only ±5% in the mean
- Time evolution modulated by the primary mirror reflectivity
Photometric scale factor strongly variable within ±20% ⇒ expected! A MEAN instrumental sensitivity curve was used

Individual nights have a dispersion of only ±5% in the mean

Time evolution modulated by the primary mirror reflectivity

$g - r$ color is offset, stable before and after mirror coating within ±0.05 mag
Cross-matching the V1200 to the V500 data

- 20″ spectra are extracted from the both calibrated cubes
- 4th-order polynomial is used to re-scale the V1200 spectrum
- Achieved a pretty good match dominated by noise only
- Highlights a matching wavelength calibration of both setups
Testing the error propagation

- Error important for fitting
- Residuals as error estimator
Testing the error propagation

- Error important for fitting
- Residuals as error estimator
- Comparison with pipeline errors show: flat, but has a 20% offset
Calibrating the errors for correlated noise

- Data will be binned to increase the S/N
- Spectra are NOT independent due to image reconstruction
- Storing of covariance matrix for each spectrum is not practical
Calibrating the errors for correlated noise

- Data will be binned to increase the S/N
- Spectra are NOT independent due to image reconstruction
- Storing of covariance matrix for each spectrum is not practical
Calibrating the errors for correlated noise

- Data will be binned to increase the S/N
- Spectra are NOT independent due to image reconstruction
- Storing of covariance matrix for each spectrum is not practical

⇒ it seems that errors can be empirically corrected quite nicely!
Gas velocity maps across the color-magnitude space
The ionised gas in CALIFA early-type galaxies

Emision-line maps (NGC 5966) Emision-line diagnostic (NGC 5966)

- Emission-line maps reveal ionised gas on several kpc in some early-type galaxies
- Central source is classified as a LINER nucleus
- Cone-like shape points to an AGN origin for the ionisation
- Emission-line diagnostics still allow for hot stars as alternative
The Mice galaxy - Detection of a galactic outflow?

- Extended ionised gas region detected West of nucleus A
- Emission-line ratios nicely follow shock+precursor models

⇒ Likely detection of a Galactic outflow
First public data release currently in preparation:

- 100 galaxies in both setups (V500 and V1200)
- Fully calibrated datacubes + errors will be distributed
- Extensive automatic and manual quality control checks
- Dedicated DR1 web service as well as VO access

⚠️ 1st CALIFA data release scheduled for autumn this year ⚠️
The CALIFA team

Please have a look at our website: www.caha.es/CALIFA

Thank you for your attention!