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Abstract.
The Gaia-ESO Survey is a wide field spectroscopic survey recently started with

the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more ac-
curate than Gaia’s for faint stars (down to V≃18), and astrophysical parameters and
abundances for approximately 100 000 stars, belonging to all Galactic populations. 300
nights were assigned in 5 years (with the last year subject toapproval after a detailed
report). In particular, to connect with other ongoing and planned spectroscopic sur-
veys, a detailed calibration program — for the astrophysical parameters derivation —
is planned, including well known clusters, Gaia benchmark stars, and special equatorial
calibration fields designed for wide field/multifiber spectrographs.

1. The Gaia-ESO Survey

Gaia-ESO is a public spectroscopic survey (Gilmore et al. 2012), targeting≥105 stars,
systematically covering all major components of the Milky Way, from halo to star form-
ing regions, providing the first homogeneous overview of the distributionsof kinemat-
ics and elemental abundances. This alone will revolutionise knowledge of Galactic and
stellar evolution: when combined with Gaia astrometry the survey will quantify thefor-
mation history and evolution of young, mature and ancient Galactic populations. With
well-defined samples, it will survey the bulge, thick and thin discs and halo components,
and open star clusters of all ages and masses. The FLAMES spectra will: quantify in-
dividual elemental abundances in each star; yield precise radial velocities for a 4-D
kinematic phase-space; map kinematic gradients and abundance - phase-space struc-
ture throughout the Galaxy; follow the formation, evolution and dissolution ofopen
clusters as they populate the disc, and provide a legacy dataset that will add enormous
value to the Gaia mission and ongoing ESO imaging surveys.

1.1. Scientific aims

How disc galaxies form and evolve, and how their component stars and stellar popu-
lations form and evolve, are among the most fundamental questions in contemporary
astrophysics (Kormendy et al. 2010; Peebles 2011; Komatsu et al. 2011). The Gaia-
ESO survey will contribute to those key questions, by revolutionising our knowledge
of the formation and evolution of the Milky Way Galaxy and the stars that populate it.
Because stars form in associations and clusters rather than singly, understanding star
formation in the Milky Way also implies studying cluster formation.
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The key to decoding the history of galaxy evolution involves chemical element
mapping, which quantifies timescales, mixing and accretion length scales, and star
formation histories; spatial distributions, which relate to structures and gradients; and
kinematics, which relates to both the felt but unseen dark matter, and dynamical histo-
ries of clusters and merger events (Freeman & Bland-Hawthorn 2002). With Gaia, and
calibrated stellar models, one will also add ages. Manifestly, very large samples are re-
quired to define all these distribution functions and their spatial and temporalgradients.

With more than 105 stars and 100 clusters, each with complete 6D space mapping
when combined with Gaia, and with the addition of astrophysical parameters (Teff,
logg, [M /H]), abundance ratios (iron-peak andα-elements, plus other species for 10 000
stars), and of ages for clusters, the Gaia-ESO Survey is the dataset needed to answer
those questions. The expected scientific output is enormous, and a brief summary of
the main survey goals is reported in the following.

Clusters and stellar evolution. Theories of cluster formation range from the
highly dynamic through to quasi-equilibrium and slow contraction scenarios.These
different routes lead to different initial cluster structures and kinematics (Jackson &
Jeffries 2010). Whilst hydrodynamic and N-body simulations are developing, afun-
damental requirement is an extensive body of detailed observations. A complete com-
parison requires precise position and velocity phase-space information resolving the
internal cluster kinematics (≤0.5 km/s).

Moreover, each star cluster provides a (near-)coeval snapshot of the stellar mass
function, suitable for testing stellar evolution models from pre-main sequencephases
right through to advanced evolutionary stages. Much of the input physics in stellar
models can be tested by its effects on stellar luminosities, radii and the lifetimes of
different evolutionary phases. Homogeneous spectroscopy will provide estimates of
stellar parameters and reddening for large samples of stars over a wide range of masses,
in clusters with a wide range of ages and mean chemical compositions.

The halo and the Bulge. Recent surveys have revealed that the halos of both
our own and other Local Group galaxies are rich in substructures (Belokurov et al.
2006). These not only trace the Galaxy’s past, but have enormous potential as probes
of its gravitational field and hence as tracers of the still very uncertain distribution of
dark matter (Helmi 2004). High precision radial velocities for many stars at latitudes
|b| > 30◦ will lead to the discovery of more substructures. Their abundance patterns
will indicate clearly whether a given structure represents a disrupted object and of which
type, or has formed dynamically by resonant orbit-trapping. The kinematicsof streams
will place tight constraints on the distribution of dark matter.

In simulations of galaxy formation, mergers tend to produce substantial bulges
made of stars that either formed in a disc that was destroyed in a merger, or formed
during a burst of star formation that accompanied the merger (Abadi et al.2003). Such
“classical” bulges are kinematically distinguishable from “pseudo-bulges”that form
when a disc becomes bar unstable, and the bar buckles into a peanut-shaped bulge
(Peebles 2011; Kormendy et al. 2010). In common with the great majority of late-type
galaxies, the Galaxy’s inner bulge appears to be a pseudo-bulge, butΛCDM simulations
suggest that it should also host a classical bulge, perhaps that observed at larger radii.
By studying the kinematics and chemistry of K giants at|b| > 5◦ we will either confirm
the classical bulge or place limits on it which will pose a challenge toΛCDM theory.
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The discs. Thick discs seem common in large spiral galaxies (Gilmore & Reid
1983; Yoachim & Dalcanton 2006). Are they evidence that the last major merger event
occurred very much longer ago than is expected in standard cosmologies?Are they ar-
tifacts of thin disc dynamical evolution? Are they both or neither of these? Howdid the
metallicity of the ISM evolve at very early times? How does this vary with Galactocen-
tric distance? Do major infall events occasionally depress the metallicity of the ISM17?
The Gaia-ESO Survey will determine quantitative kinematics and abundance patterns
for large samples of thick disc F ang G stars over one outer radial and three vertical
scale lengths to help elucidate these key questions in Galaxy formation and evolution.

The selected sample of≃5000 F and G stars (see below) within 1 kpc from the
Sun covers both thin and thick discs, and all ages and metallicities. Using field stars
and clusters, where ages are also known, the Gaia-ESO Survey will explore the region
from about 6 to more than 20 kpc in Galactocentric distance, and will trace chemical
evolution as a function of age and Galactocentric radius across a disc radial scale length.
These are key inputs to models for the formation and evolution of the Galaxy disc.
Current estimates suffer from poor statistics, inhomogeneous abundance determinations
and absence of data at key ages and orbits (Nordström et al. 2004). The Gaia-ESO
Survey will also address current disc structure, that which hosts the star formation.
Spiral structure is fundamental to the dynamics of the disc: it dominates the secular rise
in the random velocities of stars, and may even cause radial migration of stars and gas
(Antoja et al. 2010). Currently, we are not even clear about the globalmorphology of
our spiral structure, and the information we have on its dynamics largely relates to gas,
not stars. We will initiate a study of the kinematic distortion in the disc potential due to
the bar/spirals by measuring some 1000s of radial velocities down key arm, inter-arm
and near-bar lines of sight.

1.2. Survey organization

The survey has approximately 300 co-investigators, and the work is structured in a
series of documents agreed with ESO, principally the Survey Management Plan and
the Survey Implementation Plan. Fig. 1 shows the work organization flow, where each
WG (Working group) is indicated.

The obtained raw data will become publicly available through the ESO archiveas
soon as they are obtained. There will be different advanced data products releases:

• semestral data releases: will begin 12 months after observations started (31 De-
cember 2011) and they will refer to all targets that were completed six months
before the release date; they will contain reduced 1D spectra with variance, radial
velocity with uncertainty, basic target information (including variability);

• annual data releases: they will start 18 months after observations startedand will
refer to all targets that were completed six months before the release data; they
will contain astrophysical parameters determination for the single stars and for
the clusters as a whole;

• final data release: containing the full determinable set of astrophysical parameters
for each individual target, and for the open clusters as systems, with updated and
consistent calibration.
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Figure 1. An overwiev of the Gaia-ESO Survey data flow system.

1.3. Observing strategy

The Gaia-ESO Survey was awarded 300 observing nights (60 nights peryear, with the
last year subject to approval after a progress review) with FLAMES atthe ESO VLT
(Very Large Telescope). FLAMES (Pasquini et al. 2002) feeds fibers to two spectro-
graphs: UVES (Dekker & D’Odorico 1992), with a resolution of R≃47 000, receives 8
fibers and GIRAFFE, with a resolution ranging from R≃15 000 to 20 000, receives 132
fibers. Part of the fibers are dedicated to the sky, and a few special fibers are illuminated
by wavelength calibration lamps, allowing for a radial velocity determination to better
than 100 m/s. Observations started in December 2011.

A selection of the order of 105 stars belonging to all Galactic components will be
obtained from exisiting photometric surveys such as 2MASS (Skrutskie et al. 2006),
VISTA (Saito et al. 2010), SDSS (Aihara et al. 2011) and from dedicated photome-
tries either found in the literature (Dias et al. 2002; Kharchenko et al. 2005, to name
a few) or specifically derived from public archival data. Observations are restricted to
+10◦≥Dec≥–10◦ whenever possible, to minimize airmass limits, and to 9≥V≥19 mag
(where for V>17 mag only radial velocities will be measured).

The primary targets in the various Galactic components will be:

• bulge:≃10 000 K giants belonging to the red clump (I≃156 mag), for an abun-
dance analysis of iron-peak andα-elements with both UVES and GIRAFFE;

• halo and thick disk: F and G stars, with 17≥r≥18 mag, for iron-peak andα-
elements down to [Fe/H]≃–1.0 dex; stars belonging to known streams (e.g., Sgr)
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will be targeted; the halo targets are expected to be many thousands, as are the
thin+thick disk stars;

• outer thick disk (2–4 kpc fonr the Sun): F and G stars, with 25% of the fibers allo-
cated to candidate K giants (r≤18 mag) for studying the warp and the Monoceros
stream;

• thin disk dynamics: six fields at I≤19 mag will target red clump stars for disk
spiral arm/bar dynamics, and only radial velocities will be obtained;

• Solar neighborhood: UVES parallel observations of approximately 5000G stars
within 1 kpc from the Sun, for a detailed abundance analysis of all available
elements in the 4800–6800 Å range.

• Open clusters: a total of∼100 clusters of all ages (excluding the embedded phase)
will be observed, choosing high-probability members of all spectral types— as
appropriated — from O to K dwarfs and giants, and including unveiled PMS (Pre-
Main Sequence) stars; the faintest targets will provide accurate radial velocities,
the brightest ones a detailed chemical abundance analysis;

• calibration fields: these are discussed in Sect. 2;

• archival data: the Gaia-ESO Survey will analyse all ESO archival dataconsistent
with the observing set-ups and the scientific goals of the survey.

2. Astrophysical calibration

This conference was focused mainly on the standardization and calibrationof physi-
cal quantities, such as the flux or the wavelength, that can be directly measured, and
on the impact of factors that make those measures difficult, such as the effect of the
atmosphere.

However other astrophysical quantities are derived in a much more indirect way,
by combining direct measurements (for example equivalent width of absorption lines,
or oscillator strengths measured for the corresponding transitions) on sophisticately
treated data with theoretical models (for example stellar atmospheric models). The re-
sulting astrophysical parameters (Teff, logg, [Fe/H], [α/Fe], and other abundance ratios)
— that will be derived in the Gaia-ESO Survey — also need their own calibration. How-
ever, an astrophysical calibration is based on the comparison of measurements that are
often of comparable quality to each other, and ultimately can be described as the effort
of estimating the systematic uncertainties underlying a set of indirect measurements.

The basic example of astrophysical calibrator in the case of high-resolutionabun-
dance analysis of stellar atmospheres, is the Sun. It is studied with a much higher
precision, with much better data (because it is extremely bright) and by many different
groups with different technicques. Thus, all astronomers deriving an abundance analy-
sis of solar type stars, analyze the Sun as well with the same method, and compare their
results with the consensus solar abundance set. However, the Sun is a good calibrator
only for solar metallicity dwarfs, and there is of course no guarantee that itwill be as
good for metal-poor giants, for example.

Thus, the Gaia-ESO survey dedicates a fraction of the time (approximately 100 h)
to observations of calibrators with various purporses. These are:
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Figure 2. The Gaia benchmark stars, with their direct measurements of Teff and
logg (courtesy of U. Heiter).

• a selection of stars for radial velocity calibration mainly from Crifo et al. (2010),
a large catalogue of stars which are stable to 300 m/s and that will be used for the
radial velocity calibration of Gaia as well;

• a selection of stars covering the parameters space of the Milky Way field point-
ings (Fig. 2); these have their parameters determined independently and asdi-
rectly as possible (i.e., using parallaxes, diameter measurements and so on) and
are also used to calibrate the parametrizer algorithms of the Gaia pipelines;

• a selection of templates peculiar stars of types which may fall into our selection
windows, including barium and carbon stars, r- and s-process enhanced stars
(e.g., from Alksnis et al. 2001);

• a set of approximately 30–50 globular and open clusters, which will coverthe
entire metallicity scale covered by the Gaia-ESO Survey; these are chosen as
external calibrators among the best studied clusters in the literature, and contain
objects in common with other ongoing or planned spectroscopic surveys (e.g.,
RAVE, HERMES, APOGEE, see also Lane et al. 2011; Frinchaboy et al.2010);

• a set of internal calibrators, typically relatively young open clusters, containing
stars of different spectral types, to link different abundance analysis methods,
such as those employed for hot stars (O, B, and A), cool stars (F, G, K, and even
M stars), or PMS stars of all spectral types; nearby open and globularclusters
will ensure the link between dwarfs and giants;

• a set of pre-defined fields around the celestial equators and possibly at the Eclip-
tic Pole, containing a mix of objects with different characteristics, to be used
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as calibrating fields for stellar spectroscopic surveys carried out with wide field
multi-object spectrographs; two of these fields are in the areas surveyedby the
Corot mission, in the direction of the Galactic center and anti-center (Gazzano
et al. 2010).

Thus, the Gaia-ESO Survey will maximise its legacy value by providing all the
tools to link its measurements with past and future studies, ultimately with the goal of
combining all the large stellar spectroscopic sturveys together.
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