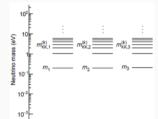
ESTIMATING SHAPE-LIKE SYSTEMATICS FOR THE LARGE EXTRA DIMENSIONS SEARCHES IN DUNE

DAVID VANEGAS FORERO

DUNE BSM Physics WG Meeting June 22nd, 2021



In coll. with A. Sousa, E. Fernandez-M, S. Rosauro

Model signatures/consequences

LED model (Davoudiasl et. al 2002) :

- In this model, three bulk right-handed neutrinos coupled (via Yukawas's) to the three active brane neutrinos.
- After compactification of the effective extra dimension, from the four dimensional (brane) point of view, the right-handed neutrino appears as an infinite tower of sterile neutrinos or Kaluza-Klein modes.

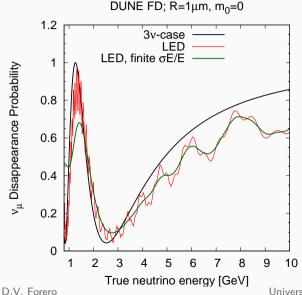
Phenomenological consequences:

- The sterile-active mixings and the new oscillation frequencies modify the active 3ν -oscillations therefore distorting the neutrino event energy spectrum.
- Departures from the standard oscillations due to the existence of LED can then be probed at neutrino oscillation experiments (Long & Short baselines).

Vacuum probabilities

Three-active neutrino oscillation probability:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} \exp\left(-i \frac{m_{k}^{2}}{2E}\right) \right|^{2}$$


LED oscillation probability, *n*-KK modes:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{3} \sum_{n=0}^{\infty} U_{\alpha k}^{*} U_{\beta k} (L_{k}^{0n})^{2} \exp\left(-i \frac{\left(\lambda_{k}^{(n)}\right)^{2}}{2ER^{2}}\right) \right|^{2}$$

& $\lambda_{k}^{(n)}$ is obtained from $\lambda_{k}^{(n)} - \pi (m_{k}^{D} R)^{2} \cot(\pi \lambda_{k}^{(n)}) = 0$ with $\lambda_{k}^{(n)} \in [n, n+1/2]$. We can then make the identification:

$$m_k^{(n)} = \frac{\lambda_k^{(n)}}{R} \stackrel{n \gg 1}{\to} \frac{n}{R}$$
, and for the 'modified' mixing $U_{\alpha k} L_k^{0n}$

Four free parameters m_1^D , m_2^D , m_3^D and R in the theory, reduced to two m_0 and R. For 'n = 0' and ' $m^D R \ll 1$ ', 3ν -flavor phenomenology must be satisfied Davoudiasl et. al 2002. D.V. Forero Universidad de Medellín

Main features

Most active (sterile) case corresponds to n = 0($n \ll 1$). The standard 3ν -neutrino oscillations are recovered in the limit $R \rightarrow 0$.

- Global reduction of survival probabilities, which is typically noticeable at high energies (Machado et. al 2011).
- Appearance of modulations and fast oscillations to Kaluza-Klein states.
- These shape-like features can be exploited at the analysis level. This have been done in MINOS (2016).
- Sensitivity analyses for several osc. Exps (Machado et. al 2011), IceCube (Esmaili et. al. 2014), DUNE (Berryman et. al 2016... "revamped" for DUNE FD TDR & ND CDR), and SBN (Stenico, DVF, Peres 2018).

Universidad de Medellín

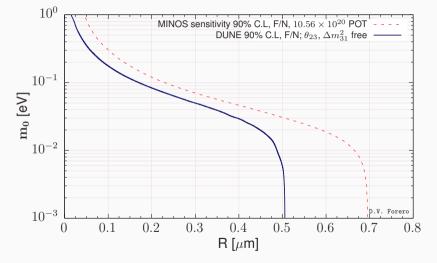
Previous DUNE setup

 $40kt \times (3.5yr(\nu) + 3.5yr(\bar{\nu})) \times 1.07MW = 300 \ kt \ MW \ years \ of \ exposure$

Information considered in the analysis:

- Signal: CC, ν and $\bar{\nu}$, appearance and disappearance oscillation channels included in the analysis.
- Only FD information is considered, but ND fixes the flux normalization.

Systematics

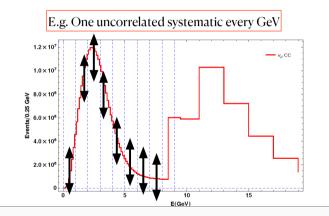

- T. Alion et. al. arxiv:1606.09550 \rightarrow First GLoBES files release.
 - Signal normalization systematical errors: $\sigma(\nu_e) = 0.02, \ \sigma(\bar{\nu}_e) = 0.02, \ \sigma(\nu_\mu) = 0.05, \ \sigma(\bar{\nu}_\mu) = 0.05.$
 - Background normalization systematical errors:
 - $\sigma(\nu_{\mu}) = 0.05, \ \sigma(\nu_{e}) = 0.05, \ \sigma(\nu_{\tau}) = 0.2, \ \sigma(\bar{\nu}_{e}) = 0.05 \ \& \ \sigma(\textit{NC}_{\textit{dis}}) = 0.1.$
 - At this point, bin-to-bin uncorrelated systematics (or SHAPE syst.) not included!

<u>Fluxes</u>

• The "Optimized Engineered Nov2017".

DUNE Sensitivity to LED; 300 kt-MW-years of exposure

DUNE TDR arxiv:2002.03005



Thanks to S. De Rijck we can show MINOS sensitivity result (Asimov data). D.V. Forero Universidad de Medellín

Work in progress...

Shape systematics in GLoBES

Define energy points, p_E , and size of the systematic, s, at each p_E

In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG

Current DUNE setup

 $40kt \times (6.5yr(\nu) + 6.5yr(\bar{\nu})) \times 1.2MW = 624$ kt-MW-yrs of exposure $\equiv 10$ yrs(staged)

Information considered in the analysis:

- Signal: CC, ν and $\bar{\nu}$, appearance and disappearance oscillation channels included in the analysis.
- Only FD information is considered, but ND fixes the flux normalization.

Systematics

B. Abi, et. al, arxiv:2103.04797 \rightarrow Latest GLoBES files: $|E_{rec}$ binwidth= (TDR binwidth)/2.

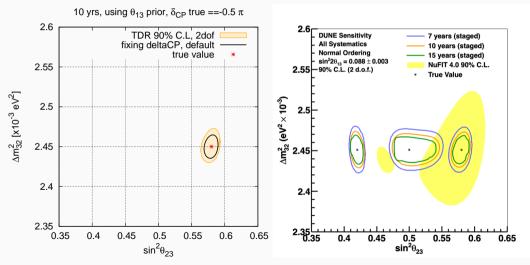
• Signal normalization systematical errors:

$$\sigma(\nu_e) = 0.02, \ \sigma(\bar{\nu}_e) = 0.02, \ \sigma(\nu_\mu) = 0.05, \ \sigma(\bar{\nu}_\mu) = 0.05.$$

Background normalization systematical errors: ۲

 $\sigma(\nu_{\mu}) = 0.05, \ \sigma(\nu_{e}) = 0.05, \ \sigma(\nu_{\tau}) = 0.2, \ \sigma(\bar{\nu}_{e}) = 0.05 \ \& \ \sigma(NC_{dis}) = 0.1.$

• bin-to-bin uncorrelated systematics (or SHAPE syst.) included, as explained in slide 9.

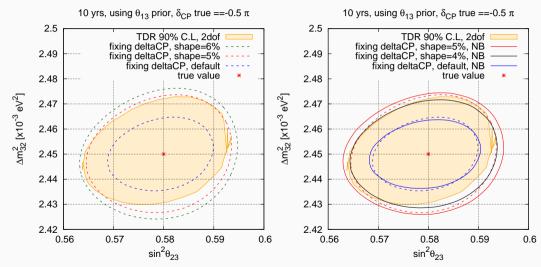

Fluxes

• The "Optimized Engineered Nov2017".

Estimating the level of the 'shape' systematics

Atmospheric plane, the importance of the shape systematics

LBL phys. Potential of the DUNE Exp. arxiv:2006.16043, FIG. 26

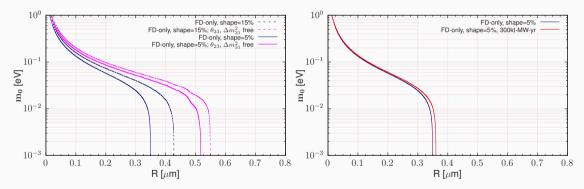


D.V. Forero

Universidad de Medellín

Estimating the level of the 'shape' systematics

ZOOMING IN the Atmospheric plane, when using TDR binning result quoted as 'NB'



In coll. with A. Sousa. E. Fernandez-M. M. Blennow & S. Rosauro. as part of the DUNE BSM Physics WG Universidad de Medellín

DUNE Sensitivity to LED, preliminary results

FD-Only, with TDR binning & 2 KK modes

624 kt-MW-years of exposure \equiv 10 yrs (staged). DUNE 90% of C.L for 2 d.o.f:

In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG

D.V. Forero

Universidad de Medellín

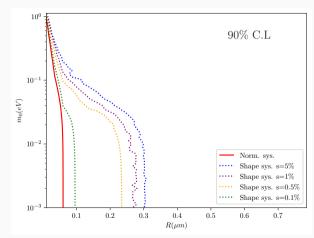
Present & Near Future Plans

Presented at the DUNE Coll. Meeting in May 2021

- We (A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro), and also Michael Wallbank, Jeremy Hewes and Callum Wilkinson had discussions on what it is needed to include a realistic set of systematics for the 2-detector analysis.
- Callum Wilkinson and Elizabeth Worcester provided us with the FULL systematical errors used in the 3-flavor neutrino analysis (for the TDR) in the form of covariance matrices (using CAFAna).
- A less than a week ago, Michael Wallbanck, Jeremy Hewes & Herilala Razafi 'translated' the covariance matrices into a format that can be included into our LED analysis in GLoBES.

Plans:

- To understand the departures from 3-flavor results in arxiv:2006.16043, FIG. 26 obtained when estimating of the level of systematics, using GLoBES files (first procedure).
- To implement the covariance matrices for the 2-detector analysis including LED (second procedure).
- First procedure is considered as a cross check of the second one, at least for the FD-only sensitivity to LED.


THANK YOU FOR YOUR ATTENTION!

Back up

Towards a two-detector fit

First results for 2 KK modes, with the old binning

Includding a shape-like systematic error in the signal (uncorrelated between detectors) in the ND.

In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG D.V. Forero Universidad de Medellín

16