VD Bottom Cold Electronics update on the analysis of channels with abnormal-RMS noise

Vladimir Tishchenko
U.S. CRP and BDE meeting 01/19/2022

- CERN
- VD ColdBox
- APA tes \dagger
- BNL
- CE testing (FEMB, ASICs)
- Which university and lab partners are going to be available for CE testing?
- CE grounding optimization studies using CRU test setup
- Based on run 12352
- Channels with noise level above average $1640,1641,1643,1719,1720,1742,1743,1750,1751$, $1752,1759,1760,1818,1819,1854,1856,2068,2069$, 2281, 2284, 2288, 2290, 2291, 2304, 2431, 2582, 3187, 3199, 3320, 3343, 3353
- Channels with noise level below average: 1855, 3189

1639 - normal channel

1639 - normal chanel

Strips U41,U42

Anti-correlated "noise"
tional Laborator (2)

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

channel 119 (1719)

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

1855

㞓

Strips Y85,Y86

Anti-correlated "noise"

[^0]

2284

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

2288

2290

2290

run 12352 | trigger 162 | channel 2431

channel 831 (2431)

Strips Y321,Y448

Correlated "noise"
ond LabORATORY

run 12352 | trigger 162 | channel 3320

channel 1720 (3320)

 (

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

Conclusion

- The outliers are channels with
- ADC problems (stuck bit?)
- Disconnected channels
- Shorted pairs of strips?

TODO: check if strips are shorted in pairs U40/U41, Y85/Y86

Strip labeling

Merge the active volume

Use anode split 1 as an example, similar for the split 2

FEMB ID and channel

Pearson correlation between channels

Track captured - YZ view

Track captured - UY view

Track captured - UZ view

\qquad

Low correlation with neighboring channels being read out at the opposite side of CRP

Low correlation with neighboring channels being read out at the opposite side of CRP
correlation of channel 2067 with other channels

Almost 100\% correlation with Y86. Low correlation with other channels

Y86

Almost 100\% correlation with Y85. Low correlation with other channels

correlation of channel 1639 with other channels

Almost 100\% correlation with U42. Low correlation with other channels

Almost 100\% correlation with U41. Low correlation with other channels
correlation of channel 1642 with other channels

Conclusion

- Channels Y1 and Y321 are neighbors, but the correlation is small (and negative). There is a small common mode (current flows in the same direction, but the strips are read out from opposite ends of CRP, hens negative correlation coefficient).
- Channels Y1 and Y2 are neighbors, the correlation is significant and positive (the strips are read out from the same CRP side and using same FEMB).
- Thus, the major "noise" pickup mechanism is not through strips (or we should see Y1 and Y321 strongly correlated).
- First half of Y strips is (FEMBs 1-4) strongly correlates with $1^{\text {st }}$ half of Z strips (FEMBs 4-7). All FEMBs are installed on the same CRP quadrant.
Second half of Y strips is (FEMBs 11-13) strongly correlats with $2^{\text {nd }}$ half of Z strips (FEMBs 811). All FEMBs are installed on the same CRP quadrant.
- Strips Y85 and Y86 are special - they are strongly ant-correlated (current flows between the channels). Are these shorted strips?

[^0]: V. Tishchenko | SBND/DUNE mechanical meeting, January 18, 2022

