

Muon Collider Simulation in org.lcsim: overview, status and plans

- Logistics
- The org.lcsim framework
- The mcd00 detector, time evolution of hadronic showers
- Dual readout calorimeter ccal02
- Additional Tools we developed:
 - DRCalRoot: detailed studies of DR calorimetry
 - DRImageDB: organizing our results
- What's the plan?

Hans Wenzel

Oct. 19th 2011

Logistics

Weekly meeting 'every' Friday 10 am in the 8th floor Quarium (this week 1 north)

• Topics:

- Dual Read out calorimetry: simulation and Event reconstruction.
- Dual read out calorimetry for future lepton colliders
- Test Beams: single Crystals → EM calorimeter → soon scintillating glass calorimeter
- Enabling technologies:
 - Photo detectors: SiPM's
 - Dense crystal materials
- If you want to be added to the mailing list send mail to wenzel@fnal.gov
- Agenda page:

http://ilcagenda.linearcollider.org/categoryDisplay.py?categId=151

The mcd00 detector in org.lcsim

- Ideal (not realistic) :
- totally active (no sampling)
- total absorption
- 5T solenoidal field but no coil (dead material)

Norman Graf

Calorimeter Properties

NUM LAYERS	EM	Hadron	Muon
Material	Tungsten	Steel 235*	Iron
Z	74		26
Density {g/cm^3}	19.3	7.87	7.85
Cell size {cm^3}	1	2	10
Detector Depth {cm}	10	80	300
Radiation Length	6.76g/cm^2 0.35 cm	13.9g/cm^2 1.76 cm	13.8g/cm^2 1.76 cm
Nuclear Interaction Length	185 g/cm^2 9.58 cm	132.1 g/cm^2 16.8 cm	131.9 g/cm^2 16.8 cm

Z'(3TeV) $\rightarrow \mu^+ \mu^-$ in mcd00

Compare to 10 GeV μ

Status

 Entire chain running at Fermilab (together with Alex Conway, (Young Kee's student) and Norman Graf)

- Event generation (pythia)
- Simulation (SLIC)
- Event reconstruction (lcsim.org)
- Analysis (jas3)
- Documentation (confluence pages)
- <u>But:</u> Detector description was not complete:
 - Had to create tracker description, steering file for digitization.
- Even bigger BUT: it's buggy simulation hangs for anything more complicated than single event files → scratch mcd00 Needs Tracking and calorimetry work on more realistic concept

Hadron Shower Time Structure

Importance of delayed component strongly depends on target nucleus
 Sensitivity to time structure depends on the choice of active medium

Time evolution of hadronic showers

10 GeV Pions

on Accel

But No Dual readout correction! Need to study How much resolution can be recovered by applying Dual read out correction.

Edgar Nandayapa (Summerstudent), Alex Conway (student of Young-Kee Kim)

Energy response and resolution

No clustering:

ACCA

		Mean or respons	energy se (GeV)	RN (Ge	∕IS ≘V)	RMS/sqrt(E)					
		Electron s	Pions	Electro ns	Pions	Electro ns	Pions				
	1000ns	9.95	8.25	0.02	0.58	0.6%	18%				
	100ns	9.95	7.76	0.03	0.72	1%	23.7%				
	10ns	9.94	7.48	0.04	0.86	1.3%	27%				
=ixed cone clustering											

		Mean e respons	energy e (GeV)	RM (Ge	IS ≥V)	RMS/sqrt(E)			
		Electron s	Pions	Electro ns	Pions	Electro ns	Pions		
	1000ns	9.54	7.90	0.083	0.771	2.6%	24.4%		
Alex Conway	100ns	9.94	7.57	0.052	0.83	1.6%	26.2%		
	10ns	9.93	7.34	0.087	0.91	2.8%	28.8%		

Again: We need to study how dual read out correction will help.

A dual read-out calorimeter for the hadron collider

- Fast: photons, SiPm's \rightarrow make timing possible
- includes both electromagnetic and hadronic parts has separate readout of the Cerenkov and scintillation light
 → uses their correlation to obtain superior hadronic energy resolution.
- This HHCAL detector has a total absorption nature
- \rightarrow energy resolution is not limited by the sampling fluctuations.
- no structural boundary between the ECAL and HCAL \rightarrow no dead material in the middle of hadronic showers.
- No differences in response of ecal and hcal.
- Fine segmentation \rightarrow allows to apply PFA algorithms to further improve (energy/mass) resolution

The CCAL02 detector

(Crystal Calorimetry version of SID, more realistic than mcd00 but needs to be modified for muon collider environment)

				BC	GO	Pb\	NO ₄
Name	Layers	Thickness/Layer	Segmentation	X ₀	λ	X0	I
		[cm]	[cm x cm]				
ECAL Barrel	8	3	3 x 3	21.4	1.1	27	1.3
HCAL Barrel	17	6	5 x 5		4.7		5.7
Total Barrel	25				5.8		7
ECAL Endcap	8	3	3 x 3	21.4	1.1		1.3
HCAL Endcap	17	6	5 x 5		4.7		5.7
Total Endcap	25				5.8		7

Material	Density	Rad. len. X0	IA len.
	[g/cm3]	[cm]	[cm]
BGO	7.13	1.12	21.88
PbWO4	8.3	0.9	18
SCG1-C	3.36	4.25	45.6

Polynomial Correction Functions: E=S/Pn

Z'(3TeV) $\rightarrow \mu^+ \mu^-$ in ccalO2

<u>14</u>

Plan

- Need a working detector model for the muon collider (Work with SLAC). Challenge is to deal with backgrounds while maintaining high precision (can it be done?) → Needs detailed studies.
- Calorimeter:
 - Dual readout (need to study how timing will affect the resolution after dual readout correction is applied)
 - Raja type: (digital sampling calorimeter with traveling time gate, software compensation)
- Tracker:
 - More like LHC than ILC, double or triple layers might be needed to help with pattern recognition. Need fast timing to reject background --> this will all come at a price (material budget)
- Once we have a detector description: debug, biggest challenge will be to deal with the huge backgrounds and getting them into the simulation. (much more challenging than pile

up at LHC and that was already difficult)

Organizing the data: DRImageDB

	н	OME		elect Pl		Show Ta		Upload In		Delete I	Plots	Login									1		
	DR	lm	age	eWet	оАрр																		
	(, Tra	veloc.	🖧 LC	RAND	🚼 libra	ry o 🖌	Abstract	👞 Wel	com 🧲	EVO, Th.	. 🗧 EVC), Th	🖳 Index (of 🔧	g++ und.	🔊 Wh	at Ha 🧯	http:	.t.jsp 💿	Imag 🗙	• •	
	b M	ost Vi	sited 🔻	🛛 🕹 Get	ting Start	ed <u>ର</u> Li	atest Hea	dlines 🔻 🚦	Smart B	ookmarks	 Pers 	ional 🔻 🛽	ILC 🔻	🛅 CMS 🔻	🛅 Fern	nilab 🔻 💾	CERN 🕶	🛅 Search	n ▼ 🛅 C	:++ 🕶 📄	Linux Di	stros 🔻	
oora		•	• 8	🛛 🖉	🎽 🖂 🛃	- 🎝 🙇	🖬 🕦 🛙	* 🌣 🧻	http://g4v	alidation.f	nal.gov:80	80/DRIma	ageWebA	pp/NextFi	rameWir	ndow.jsp		슈 ()	- 🛃 -	ilcagen	ıda		0
•	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	/ Hi <u>s</u> tor	y <u>B</u> ooki	marks	<u>T</u> ools <u>H</u>	elp															

Number of plots: 8

DRCalRoot: Geant 4 standalone application,

allows to do detailed tracing of optical photons.

Crystal size in x,y,y: 5 cm Nr. of cells in x,y,z: 40 Crystal Material : G4_BGO Crystal Density : 7.13 [g/cm3] Crystal interaction length: 22.6937 [cm] Crystal radiation length: 1.11801 [cm] Crystal total length (z,y,z): 200 [cm] # interaction length (z): 8.81301

(ignore material of silicon photo dets. total # of IA length: 0.0524555)

Physics list: (the infamous) QGSP_BERT No thresholds, no clustering

Hadronic physics in Geant 4

ION ACCE

E[GeV]

What's the plan?

- Develop a functional and 'realistic' detector description
- add timing information to the calorimeter Hits (done for DRCalRoot)
- Make software generally available (ilcsim2,detsim)
- Provide mechanism to add Background events
- Provide org.lcsim drivers to run the reconstruction and analysis
- collect data cards for physics processes of interest (defined benchmarks) + backgrounds thereof. Provide standard files with generated (stdhep) events.
- documentation to guide physicist through all the steps. Confluence might be a good place for that.