

1

Status of Sensitivity to Dijet Resonances at proton-proton Colliders

Robert M. Harris *Fermilab*

September 1, 2021

Introduction to benchmark channel for discovery at pp colliders

• QCD background and dijet resonance signal

• Sensitivities: 5σ discovery and 95% CL exclusion

Conclusions

- Essential benchmark of discovery capability of proton-proton colliders
 - Discovery process sensitive to a variety of new physics at highest mass scales
 - Predicted by countless models proposed to address fundamental questions
- Proton-proton colliders are natural dijet resonance factories
 - Dijet resonances, X, produced by annihilation of partons in the colliding protons
 - Must decay to two partons giving dijets

- We estimate the sensitivity of pp colliders to this essential process
 - LOI: <u>SNOWMASS21-EF9_EF8_RobertHarris-055.pdf</u>

- Comprehensive study of all scenarios for current and future pp colliders
- \sqrt{s} : eight collision energies
 - LHC & HL-LHC: 13 & 14 TeV
 - ➡ HE-LHC: 27 TeV
 - ➡ FCC-hh: 75, 100 (default), 150, 200 TeV
 - Collider in the sea: 500 TeV (why not . . .)
- JL dt: ten integrated luminosities
 - Five general values with logarithmic spacing: 10¹ 10⁵ fb⁻¹
 - Five benchmark integrated luminosities previously used or recommended
 - ➡ LHC: 140 fb⁻¹ (Run 2), 200 fb⁻¹ (Run 3)
 - ➡ HL-HC: 3 ab⁻¹
 - ➡ FCC-hh: 2.5, 30 ab⁻¹
- Mass sensitivity for discovery/exclusion of dijet resonances at all $\sqrt{s} \& \int L dt$

- Lowest order parton level calculations of QCD background and signals
 - Updating my study for Snowmass 1995: <u>hep-ph/9609319</u> (time flies …)
 - Supplemented by more modern simulation estimates of signal acceptance
- Selection cuts similar to publications from LHC
 - Two final state partons have |η|<2.5
 - Angular cut $|\Delta \eta| < 1.1$ (same as $|\cos \theta^*| < 0.5$) to suppress QCD t-channel pole
- Calculate signal and background inside a search window
 - Centered on pole mass M and 16.4% wide: 0.836 M < dijet mass < 1.164 M</p>
 - Signal acceptance estimated from CMS resonance shapes (more on this later)
- Estimate number of events, and signal model masses, required for
 - → 95% CL exclusion: 1.64 σ on N_{QCD}→∞, 3 events when N_{QCD}=0.
 - → 5s discovery: 5 σ on N_{QCD} →∞, 25 events (conservative) when N_{QCD} =0.

- We check our lowest order QCD calculation of the background with LHC data
- It agrees to within ~10% with CMS data from Run 2.
 - CMS uses wide jets that correspond well to the partons in a 2→2 process
- We use the same choices for all pp collision energies
 - Renorm. scale $\mu = p_T/2$
 - CTEQ6L1 PDF

- QCD background
 - Lowest order parton level calculation of cross section in 16.4% mass window centered on resonance pole
- QCD background, at a mass proportional to the collision energy, decreases gradually with increasing collision energy
- High mass searches use QCD data between about 5% and 75% of the collision energy

- Multiple benchmark models
 - Spanning a range of cross sections from various interaction strengths
- Excited quarks $(qg \rightarrow q^* \rightarrow qg)$, preliminary results now.
 - Earliest benchmark for searches at hadron colliders: $Sp\bar{p}S$, Tevatron, LHC
 - Large cross section from strong production

Other models we will explore fully later, a few preliminary results now

- Scalar diquarks $(qq \rightarrow D \rightarrow qq)$: large cross sections from valence quark PDF
- → Colorons $(q\bar{q} \rightarrow C \rightarrow q\bar{q})$: strong production of massive gluons
- → W' $(q\bar{q}' \rightarrow W' \rightarrow q\bar{q}')$: electroweak-like production of a new W boson (SSM)
- → Z' $(q\bar{q} \rightarrow Z' \rightarrow q\bar{q})$: electroweak-like production of a new Z boson (SSM)
- ▶ Randall-Sundrum Graviton ($q\bar{q}$, $gg \rightarrow G \rightarrow gg$, $q\bar{q}$): Warped extra-dimension
- Lowest order calculations of total signal cross section (CTEQ6L1, μ=M)
 - Multiplied by signal acceptance in dijet mass window

Signal Acceptance

- Resonance shape
 - Gaussian core from experimental resolution
 - Long tail to low mass from radiation and PDF
- Acceptance scaling
 - ➤ Window acceptance should be roughly independent of √s
- Check acceptance scaling with MC simulations of signals at each collision energy (next slide)

- q* shape for genjets scales when resonance mass is a fixed fraction of \sqrt{s}
 - Approximately invariant with increasing \sqrt{s} for wide genjets
 - Window acceptance should be invariant for fixed model & appropriate detector

- Expected cross section upper limits compared to signals models in mass window
 - Gives snowmass expected mass limits on models where curves cross
- Snowmass limits at 13 TeV agree with CMS (<u>1911.03947</u>) & ATLAS (<u>1910.08447</u>)
 - Estimating sensitivity from LO calculation of events in a window works well enough \checkmark

- Preliminary plots for FCC-hh (100 TeV) and HE-LHC (27 TeV)
 - Discovery cross section is inversely proportional to:
 - → ($\int \mathcal{L} dt$) ^{1/2} (large background) 🗸
 - L dt (no background) √

100

15.1

14

- 춖
- 5σ discovery reach Excited Quark \rightarrow jj Discovery at pp Colliders 5σ Discovery Mass [TeV] Increases linearly with \sqrt{s} , and 80 Snowmass 2021 (Harris) logarithmically with $\int \mathcal{L} dt \checkmark$ arXiv:1902.11217 (Helsen et al) Within ~10% of previous studies 70 150 FCC (100 TeV) q* Discovery Mass 60 ∫ L dt Harris Helsen √s [TeV] 50 [ab-1] [TeV] [TeV] 100 40 2.5 36 36 --F1-1 75 30 44 40 30 100 47 43 20 HE-LHC (27 TeV) q* Discovery Mass 10 Í L dt Helsen Harris 13,14 [ab⁻¹] [TeV] [TeV] **10**⁵ **10³** 10² **10**⁴ 10 11.5 10 1 Integrated Luminosity [fb⁻¹] 13.3 10

- 95% CL Expected Exclusion
 - Increases linearly with √s & logarithmically with ∫⊥ dt ✓
 - More significant differences with previous FCC studies.
 - Agrees with all CMS data

FCC (100 TeV) q* Expected 95% CL

∫ L dt	Harris	Helsen
[ab ⁻¹]	[TeV]	[TeV]
2.5	43	41
30	50	43
100	54	45

LHC (13 TeV) q* Expected 95% CL

∫ L dt	Harris	CMS
[fb ⁻¹]	[TeV]	[TeV]
13	5.34	5.4
140	6.27	6.2

 Preliminary q* discovery and exclusion masses vs. integrated luminosity for all pp collision energies, from the LHC to the Collider in the Sea.

5σ Discovery

95% CL Limits

Robert Harris, Fermilab

- We are estimating sensitivity to multiple models of dijet resonances across a wide range of pp collision energy (\sqrt{s}) and integrated luminosity ($\int \mathcal{L} dt$)
- Simple methodology gives robust predictions
 - Reproduces CMS Run 2 backgrounds and LHC expected limits for all models
- Shape of dijet resonances at fixed fraction of \sqrt{s} is approximately invariant
 - When searches are conducted using wide jets that correspond well to partons
- Sensitivity to excited quarks (q*) at pp colliders scales as expected
 - Increases linearly with \sqrt{s} and logarithmically with $\int \mathcal{L} dt$.
 - ➡ For HL-LHC (14 TeV, 3 ab⁻¹), q* limit at 8 TeV, discovery at 7 TeV
 - For HE-LHC (27 TeV, 10 ab⁻¹), q* limit at 15 TeV, discovery at 13 TeV
 - For FCC-hh (100 TeV, 30 ab⁻¹), q* limit at 50 TeV, discovery at 44 TeV
- Future plans include other benchmark models (diquarks, colorons, W', Z', RS gravitons) and more signal shape studies

R. M. Harris with

E. Gurpinar Guler Y. Guler

- Sensitivity to Dijet Resonances at proton-proton Colliders
 - Collision Energies: 13, 14, 27, 75, 100, 150, 200 & 500 TeV
 - Luminosities: 10 10⁵ fb⁻¹ and machine benchmarks in between.
 - Models: Excited Quarks (q*), Diquarks, Colorons, W', Z', RS gravitons
 - Preliminary q* results below, working on other models & signal shape studies

