Second Pass on WIB Metadata

K/D	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Data Source
0001		0x00 0x00 0x00 SoF (K28.1)															WIB																
0000															WIB																		
0000	32-bit WIB/COLDATA Code												WIB																				
0000	Timestamp [31:0]											WIB																					
0000													WIB																				
0000	ι	U(2) ADC[3:0] U(1) ADC[13:0] U(0) ADC[13:0]													FEMB0																		
0000	U(4) ADC[7:0]								U	(3) AD	[3] ADC[13:0]						U(2) ADC[13:4]							FEMB0									

0000	X(45) ADC[9:0]		X(44) ADC[13:0]	X(43) ADC[13:6]	FEMB1						
0000	X(47) ADC[13:0]		X(46) ADC[13:0]	X(45) ADC[13:10]	FEMB1						
0000	12-bit flex word		CRC-20	WIB							
0001	24-bit flex word EOF (K.28.6)										
0001	0x00	0x00	0x00	IDLE (K.28.5)	IDLE/WIB						

14-bit WIB Code

32-bit WIB/COLDATA Code

12-bit flex word

24-bit flex word

(We are going to completely ignore slow controls and DDSS information, which do not (obviously) go into the frame header or trailer).

+One bit of the COLDATA v2 already dedicated to pulser

Configurations and Conditions

One way to divide up the cases:

Configurations=the way we want it to be set up

Conditions=how it may have changed

This gets murky when we imagine *dynamic re-configurations*:

- WIB will run calibrations locally, re-configuring DAC settings, etc.
- WIB will have ability to remove and FEMB from data stream (e.g., mask)
- WIB will run its own resynchronizations if necessary

For our purposes, this doesn't matter too much unless we want to go through the pain of first alerting CCM there is a problem and having it re-configure things--We have to be able to flag dynamic changes to config information

Use Case: Physics Running

We want (at least):

- Data Frame version number
- WIB slot number
- WIEC crate number
- CRC-20

Already in frame definition

- FEMB "enables" --- 2-bit mask that tells us which FEMBs are currently providing valid data
- Configuration ID --- how many bits?
- Configuration ongoing (transition bit?) 1 bit
- FEMB Rx Link "enables" –16 bits/WIB
- ADC Calibration bit (0 for normal data) --- data doesn't go to FELIX so not needed
- Pulser calibration bit (0 for normal data)
- Stream this data (1 bit per FEMB?) and ignore for hit-finding
- WIB Synchronization OK --- 1 for OK, comes from PLL, could get this from Endpoint
- FEMB synchronization OK --- 2 bits, 1 for OK
 - Need to figure out how to determine this
 - Will we be able to do this while powered? Just need to test.

Use Case: Pulser Calibrations

Flex bits (contextualized by pulser calibration bit):

- Current DAC setting --- ~16 bits
- Current gain setting 2 bits Move this to new run, keep in config database -- has to come from Run Control
- Current shaper setting 2 bits? Move this to new run, keep in config database---has to come from Run Control
- Pulser offset? --- need to define—need to think about real bit width necessary
- Pulse count? --- need to define. Can't set number of pulses, but could count the
- Frame includes pulse?

Do we need to double number of bits to deal with 2 FEMBs?