(HL-)LHC W mass measurements and prospects

EF04 Topical Group Community Meeting 13 August 2021

Mika Vesterinen, University of Warwick

Science and Technology Facilities Council

Hadron collider m_w-sensitive observables

boson p_T

The Tevatron legacy

D0, <u>PRL 108 (2012) 151804</u>

Source	m_T	p_T^e	ET.
Experimental			
Electron Energy Scale	16	17	16
Electron Energy Resolution	2	2	3
Electron Shower Model	4	6	7
Electron Energy Loss	4	4	4
Recoil Model	5	6	14
Electron Efficiencies	1	3	5
Backgrounds	2	2	2
\sum (Experimental)	18	20	24
W Production and Decay Model			
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
\sum (Model)	13	14	17
Systematic Uncertainty (Experimental and Model)	22	24	29
W Boson Statistics	13	14	15
Total Uncertainty	26	28	33

CDF, <u>10.1103/PhysRevLett.108.151803</u>

Source	Uncertainty	
Lepton energy scale and resolution	7	
Recoil energy scale and resolution	6	
Lepton tower removal	2	
Backgrounds	3	
PDFs	10	
$p_T(W)$ model	5	
Photon radiation	4	
Statistical	12	
Total	19	

D0	5.3 fb ⁻¹	1.7 x 10º W →ev	80375 ± 11 _{stat} ± 20 _{syst} MeV
CDF	2.2 fb ⁻¹	1.1 x 10º W →[µ,e]v	80387 ± 12 _{stat} ± 15 _{syst} MeV

$\sigma_{stat} \approx \sigma_{calib} \gtrsim \sigma_{theory}$

From Tevatron to LHC

$\sigma_{\text{stat}} \approx \sigma_{\text{calib}} \gtrsim \sigma_{\text{theory}}$

 $\sigma_{\text{theory}} \gg \sigma_{\text{stat}} \approx \sigma_{\text{calib}}$

Billions of W events already recorded by ATLAS/CMS and 10 million recorded by LHCb!

Commensurate samples of Z, quarkonia etc... for calibrations, higher resolution detectors and improvements in the accuracy of full detector simulations.

W production uncertainties are larger because production dominated by valence quark plus sea-quark/gluon subprocesses.

Challenges known for some time. E.g. <u>ATL-PHYS-PUB-2014-015</u>

ATLAS measurement of m_w with 2011 (7 TeV) data

EPJC 78 (2018) 110

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$

Base simulation with POWHEG+Pythia, reweighted in 5D to hybrid of Pythia (boson p_T) and fixed-order (α_s^2) (angular coefficients and y distribution).

Dominant uncertainties: (i) fixed order PDF and (ii) transport of Z p_T model to the W.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

Measurement based on muon p_T in W $\rightarrow \mu v$ with Run-II (2015-2018) dataset with statistical uncertainty of ~10 MeV.

Partial anti correlation of PDF uncertainty w.r.t. measurements by ATLAS and CMS.

The key challenge is the W p_T modelling. The ultimate solution must be the use of calculations with the highest logarithmic accuracy but full event-generators (including matching to NLO) can be tuned to describe Z p_T data. How to transport the tunes to W production?

Simultaneous fit of m_W and W-specific tune

Preliminary LHCb measurement

Floating parameter	Postfit value
Fraction of $W^+ \to \mu^+ \nu$	0.5293 ± 0.0006
Fraction of $W^- \to \mu^- \nu$	0.3510 ± 0.0005
Fraction of hadron background	0.0151 ± 0.0007
α_s^Z	0.1243 ± 0.0004
α_s^W	0.1263 ± 0.0003
$k_T^{ m intr}$	$1.57\pm0.14{\rm GeV}$
A_3 scaling	0.979 ± 0.026
Source	Size [MeV]
Parton distribution functions	9.0
Theory (excl. PDFs) total	17.4
Transverse momentum model	12.0
Angular coefficients	9.0
QED FSR model	7.2
Additional electroweak corrections	5.0
Experimental total	10.6
Momentum scale and resolution model	ling 7.5
Muon ID, trigger and tracking efficience	ey 6.0
Isolation efficiency	3.9
QCD background	2.3
Statistical	22.7
Total	31.7

Simultaneous fit of the q/p_T (W events) and φ^* (Z events)

Base simulation with Pythia+GEANT, with 5D reweighting to POWHEG+Pythia (unpolarised cross-section) and DYTurbo (angular coefficients).

Final result is simple average from fits with NNPDF31, CT18, MSHT20.

Prospects for average of current LHCb+ATLAS results

Under the simplest assumptions:

A detailed ATLAS+LHCb collaborative effort will be required to precisely determine these two correlation coefficients but it seems likely that ρ_{PDF} will be negative <u>1508.06954</u> while the (non-PDF) theory uncertainty will have a positive coefficient. 10

CMS double-differential W \rightarrow Iv with 2016 (13 TeV) data

Disentangling the W_L and W_R cross-sections:

PRD 102 (2020) 092012

Double differential cross-section

Potential for a very precise m_W measurement with these data, once the W production model is under control.

CMS' W-like measurement of mz

 $M_{\sim}^{W_{\rm like}}$

 $m_{\rm T}$

Ľт

 $p_{\rm T}$

Demonstrates control over the experimental modelling aspects for all three m_W-sensitive observables.

Interesting to see how the missing E_T and M_T -based approaches scale to even higher pileup data.

The W-specific physics modelling is the obvious remaining challenge.

HL-LHC prospects

ATLAS and CMS

LHCb

Extended lepton η coverage.

Case for special low pileup runs for W mass, width and p_T measurements.

~500M W→µv events

Upgraded ECAL permits similarly precise measurement with electrons.

ATLAS study

ITK extends coverage for electrons (with tracking) from $|\eta| < 2.5$ to $|\eta| < 4$.

Dedicated low luminosity run at 14TeV for measurement including transverse mass. Requires 1 fb⁻¹ to get to 4 MeV statistical precision.

PDF uncertainty reduced to the ~1-2 MeV level with scenario including the LHeC.

The ultimate precision on m_W with the HL-LHC?

What would it take to achieve, e.g., a 5 MeV combination of ATLAS, CMS and LHCb?

Hypothetical/simplified case with just the charged lepton observables, where the extrapolation from existing ATLAS/LHCb measurements is more straightforward.

Source	Today ATLAS(LHCb) [MeV]	Goal per experiment [MeV]	Goal LHC average [MeV]	Comment
Stats	7(22)	3	1	Uncorrelated
PDFs	8(10)	4	2	Partial anticorrelation
QCD	10(12)	6	4	Mostly correlated
EW	5(5)	2	2	Mostly correlated
Calib+bgds	10(10)	3	2	Partially correlated
Total	19(32)	9	5	

LHCb upgrade-II allows ~20x reduction in statistical uncertainty w.r.t. preliminary result on 2016 data (1.7 fb⁻¹).

Assumptions about ATLAS and CMS are more complicated, and depend on the weight given to low/high pileup running, different observables etc...

Now let's look at some of the challenges...

MeV-level momentum scale calibration

Hadron collider experiments require calibration to resonances.

Resonance	σ _m /m	Concerns
Z	2 x 10 ⁻⁵	Interpretation in EW fit once total m_W uncertainty approaches the 5 MeV level.
Y(1S)	3 x 10 ⁻⁵	Precision and >3 σ tension between the two measurements in PDG average.
J/Ψ	2 x 10 ⁻⁶	Extrapolation to momenta of leptons from W/Z. Trigger/ selection biases.

Experiment-specific challenges on curvature-biases, material budget etc...

Some unique challenges related to the electron energy scale...

MeV-level theory uncertainty

ATLAS and LHCb measurements of m_W are based on full event simulation with 5D reweighting.

Simulation of full events must be required at some level.

Must make use of highest accuracy dedicated cross-section calculations... (N³LO and N³LL....)

The key question: how to evaluate the scale uncertainties?

1) range of variation?

2) degree of correlation (between kinematic bins and between numerators and denominators)?

EW and mixed QCD-EW corrections

Not clear how best to fit into reweighting of full event simulation. E.g., ATLAS, LHCb and CMS (W-like m_Z study) have used parametric weighting to vary the m_W hypothesis. The 5D "Born" basis of a 3D cross section and 8 angular coefficients becomes invalid....

Proper treatment of theory uncertainties required.

Better control over the degree of correlation between the uncertainties on the different group's sets.

Deeper validation of *in situ* profiling/weighting to reduce the PDF uncertainties (e.g. <u>EPJC (2019) 79: 497</u>).

Clear benefit of scenario with LHeC.

Realistically it is hard to say what is the ultimate precision that can be achieved with the HL-LHC.

The program is only just getting started with the first measurements from the experiments.

Some current bottlenecks (e.g. prescriptions for scale uncertainties, PDF uncertainties etc...) are already identified.

It will be really fun to try to collaborate closely between the three experiments and the theory community to see how low we can push the m_w uncertainty!

Backup slides

Vector boson production model

 k_1 Ф Born-level form of $W \rightarrow \mu \nu$ kinematics: z p_1 p_2 $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M}$ hadron plane -1 $\left\{ (1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin 2\theta \cos\phi \right\}$ $+A_2\frac{1}{2}\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta$ $+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \},\$

Electroweak corrections must also be considered.

 θ and ϕ in the Collins-Soper frame

lepton plane

The W boson p_T distribution

Complete event generation with parton-showers matched to NLO matrix elements

Cross-section calculation at up to N³LL (logarithmic) accuracy, e.g. DYTurbo*:

Tuning required to compensate for limited perturbative accuracy.

Ultimate perturbative accuracy but debated flexibility to fit the data.

25

p_T [GeV]

30

Angular coefficients

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M} \\ &\left\{ (1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi \right. \\ &\left. + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right. \\ &\left. + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right\}, \end{aligned}$$

Event generators (e.g. POWHEG) have various difficulties.

Choose to use predictions at $O(\alpha_s^2)$ from DYTurbo.

The angular coefficients are essentially [helicity] cross-section *ratios*: do we correlate the scale variations?

Angular coefficients in LHCb mw analysis

We follow the preference of <u>JHEP 11 (2017) 003</u>: *uncorrelated* prescription with 31 point scale variation.

As an aside we look forward to discussing with the [NNLOJet] code authors on the possible usage in future measurement of m_{W.} We also thank Rhorry Gauld for sharing the A₃ figure for the LHCb acceptance, which was't in the original publication.

Treatment of A₃ in LHCb measurement of m_W

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{U}+\mathrm{L}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M} \\ &\left\{ (1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi \right. \\ &\left. + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right. \\ &\left. + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right\}, \end{aligned}$$

The resulting uncertainty on m_W would be around 20-30 MeV.

Dominant sensitivity traced to the A₃ parameter.

Our solution is to float a single A₃ scale factor, which reduces the uncertainty to below 10 MeV.